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Abstract: Cortical neurons integrate upstream signals and random electrical noise to gate signaling
outcomes, leading to statistically random patterns of activity. Yet classically, the neuron is modeled as
a binary computational unit, encoding Shannon entropy. Here, the neuronal membrane potential
is modeled as a function of inherently probabilistic ion behavior. In this new model, each neuron
computes the probability of transitioning from an off-state to an on-state, thereby encoding von
Neumann entropy. Component pure states are integrated into a physical quantity of information,
and the derivative of this high-dimensional probability distribution yields eigenvalues across the
multi-scale quantum system. In accordance with the Hellman–Feynman theorem, the resolution of
the system state is paired with a spontaneous shift in charge distribution, so this defined system
state instantly becomes the past as a new probability distribution emerges. This mechanistic model
produces testable predictions regarding the wavelength of free energy released upon information
compression and the temporal relationship of these events to physiological outcomes. Overall, this
model demonstrates how cortical neurons might achieve non-deterministic signaling outcomes
through a computational process of noisy coincidence detection.

Keywords: cortical neuron; neural computation; thermodynamic computation; probabilistic coding;
two-state quantum systems; quantum information; von Neumann entropy

1. Introduction

Cortical neurons have highly unpredictable signaling outcomes [1], in contrast with
spinal neurons, whose signaling outcomes are easily predicted by analyzing upstream
inputs [2]. Cortical neurons allow random electrical noise to gate signaling outcomes, with
spontaneous subthreshold fluctuations in membrane potential significantly contributing to
the likelihood of an action potential [3,4]. Indeed, these cells actively maintain a ’cortical up-
state’, hovering near the action potential threshold and allowing stochastic events to drive
signaling outcomes [5]. This process of noisy coincidence detection results in probabilistic
firing patterns, which can be modeled with Bayesian statistics [6], random connectivity
models [7], fanofactor analysis of inter-spike variability [8], or by modifying the Hodgkin–
Huxley equations to account for electrical noise [9–11]. Notably, the most reliable models
of cortical neurons are composed of stochastic differential equations, which provide an
analog membrane potential based on ion channel opening probability, and lead to spiking
behavior upon threshold activation [12]. This method models ‘noise’ at the synapse as a
Ornstein–Uhlenbeck process [13] or by applying the Fokker–Planck equations [14].

Given the success of these inherently probabilistic computational models, it is worth
revisiting whether state transitions in cortical neurons should be modeled under classical
assumptions. Indeed, the random movement of just a few ions can push a cortical neuron
over action potential threshold [15,16], interspike intervals at the single-unit level are
statistically random [3,4], and population coding at the neural network level is statistically
random [6–8]. Quantum-scale events materially affect macro-scale outcomes at the level
of the computational unit [9–11], and probabilistic models effectively replicate cortical
neural network activity [12–14]. Furthermore, classical approaches cannot explain the
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extraordinary energy efficiency of the brain, while a model of quantum computation
can [17]. To understand the mechanics underlying a computational process where quantum
uncertainty is preserved in situ, it will be useful to develop a mathematical framework for
a multi-scale quantum system.

Classically, a spiking neuron is viewed as a binary unit, always in an on-state or
an off-state. Here, the neuron is modeled as a two-state quantum system, with some
probability of switching from an off-state to an on-state. This neuronal state is dependent
on the inherently probabilistic position and momentum of each ion in the vicinity. In this
multi-scale quantum model, the voltage of a cortical neuron is a function of all component
pure states, and an optimal system state in the present context is selected from a probability
distribution, during a process of quantum information generation and compression. This
computational process yields eigenvalues for all state vectors and immediately restores
uncertainty across the system, prompting the next computational cycle. This theoretical
model offers a mechanism by which cortical neurons might achieve non-deterministic
signaling outcomes through a process of ambient-temperature quantum computation and
yields specific predictions that can be tested in the laboratory.

2. Methods
2.1. Modeling the Cortical Neuron as a Two-State Quantum System

During up-state, cortical neurons linger at their action potential threshold, allowing
both upstream signals and random electrical noise to prompt a signaling outcome. So,
while a neuron is classically interpreted as a binary logic gate in an ‘on’ or ‘off’ state, coded
as 1 or 0, it could also be described as having some probability of converting to an ‘on’ state
or remaining in an ‘off’ state.

In this new approach, a cortical neuron integrates upstream signals with random
electrical noise, defining its voltage state as a function of time, as the system is perturbed.
The neuron starts in off-state ϕ, not firing an action potential, and over time t, it reaches
another state χ. And so, over some period of time, from t0 to t, the state of the neuron
evolves from ϕ to χ. The timepath taken from one state to another is given by:

⟨χ|U(t, t0)|ϕ⟩ . (1)

The probability of a state change can be represented in some basis:

∑ ⟨χ|k⟩⟨k|U(t, t0)|j⟩⟨j|ϕ⟩, (2)

such that U is completely described by base states k and j, which represent the initial
off-state of the neuron and the state of the neuron after the time step, respectively:

⟨k|U(t, t0)|j⟩ , (3)

The time interval can be understood as being t = t0 + ∆t, so identifying the state of
the neuron χ at time t can be understood as taking a path from one state to another:

⟨χ|ψ(t0 + ∆t)⟩ = ⟨χ|U(t0 + ∆t, t0)|ψ(t0)⟩ . (4)

If ∆t = 0, there can be no state change. In this case:

|ψ(t0 + ∆t)⟩ = |ψ(t0)⟩ . (5)

In any other case, the state of the neuron at time t is given by the orthonormal base
states k and j, with probability amplitudes:

Ck(t0 + ∆t) = ⟨k|ψ(t0)⟩ (6)
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And:
Cj(t0 + ∆t) = ⟨j|ψ(t0)⟩. (7)

The neuronal state |ψ⟩ at time t can therefore be described as a normed state vector ψ,
in a superposition of two orthonormal base states k and j, with probability amplitudes Ck
and Cj. The sum of the squared moduli of all probability amplitudes is equal to 1:

|Ck|2 + |Cj|2 = 1. (8)

Since the neuron starts the time evolution in state |ψ(t0)⟩ = j, its probable state at time
t is given by:

⟨k|ψ(t0 + ∆t)⟩ = ⟨k|U(t0 + ∆t, t0)|ψ(t0)⟩ . (9)

This equation can also be written in expanded form as the sum of all transition probabilities:

⟨k|ψ(t)⟩ = ∑j ⟨k|U(t0 + ∆t, t0)|j⟩⟨j|ψ(t0)⟩ . (10)

For the state vector ψ(t), the probability of a state change at time t is described by the
U-matrix, Ukj(t):

Ukj(t) = ⟨k|U(t0 + ∆t, t0)|j⟩ . (11)

And so, all probability amplitudes are dependent on the amount of time that has
passed, ∆t:

Ck(t0 + ∆t) = ∑j Ukj(t)Cj(t0) . (12)

The neuron undergoes perturbations over time ∆t. If ∆t = 0, there can be no state
change and k = j. If ∆t > 0, there is some probability of a state change, where k ̸= j. As
such, the two-state quantum system is described by the Kronecker delta δkj:

δkj = ⟨k|j⟩ =

{
1, if k = j
0, if k ̸= j

(13)

Each of the coefficients of the U-matrix Ukj differ from δkj by some amount proportional
to ∆t, such that:

Ukj(t) = δkj + Wkj∆t . (14)

where Wkj = −(i/h̄)Ĥkj(t), with the Hamiltonian operator term Ĥkj(t) representing the
time derivatives of each of the coefficients of Ukj:

Ukj(t) = δkj −
i
h̄

Ĥkj(t)∆t . (15)

The probability amplitude Ck(t) at time t is therefore given by:

Ck(t0 + ∆t) = ∑
j
[δkj −

i
h̄

Ĥkj(t)∆t]Cj(t0) . (16)

Since the sum of δkjCj(t0) = ψ(t0), the latter equation simplifies to:

Ck(t0 + ∆t)− Ck(t0) = − i
h̄ ∑

j
[Ĥkj(t)∆t]ψ(t0) . (17)

In dividing both sides of the equation by ∆t, it becomes apparent that any state change
is a sum of all possible perturbations that affect the system under investigation, from its
starting condition at time t0, including random events. Again, Ck(t) is the probability
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amplitude ⟨i|ψ(t0)⟩ of finding the state vector ψ in one of the base states k = j or k ̸= j at
time t. And so, the time derivative of this probability function yields the path taken:

Ck(t0 + ∆t)− Ck(t0)

∆t
= − i

h̄ ∑
j

Ĥkj(t)ψ(t0) . (18)

The system is therefore described by the time-dependent Schrödinger equation, with
any state change related to a change in energy distribution:

ih̄
dψ

dt
= Ĥψ . (19)

Where i is the imaginary unit, h̄ = h/2π is the reduced Planck constant, Ĥ is the
Hamiltonian operator, which corresponds to the total energy of the system, and ψ is
the eigenvector describing the quantum system after time t. This equation describes the
eigenstate of a system as a function of the amount of time t that has passed and the
amount of energy available for redistribution across the system, given by the Hamiltonian
Ĥ. This equation allows a system state to be defined as a distribution of probabilities
representing the possible paths taken since the system state was last defined. By combining
Equations (18) and (19), we find the probability of a state change is equal to the sum of all
time derivatives of the normed state vector:

Ck(t0 + ∆t)− Ck(t0)

∆t
= ∑

dψ

dt
. (20)

2.2. Modeling the Cortical Neuron Membrane Potential as a Function of Component Pure States

The dynamic membrane potential of a cortical neuron has been previously modeled
with the Fokker-Planck equation [14], with eigenfunctions ϕi and coefficients αi forming a
complete set on which the membrane potential distribution P(V, t) can be expanded:

P(V, t) = ∑
i

αiϕi(V)e−λit/τm . (21)

Critically, all eigenvalues are real and strictly negative, with eigenfunctions obeying
L(ϕi) = −λiϕi and λi > 0. A key component of this model is τm, the membrane time
constant of the neuron, given by:

τm =
gL
cm

+ veae + viai , (22)

where ve and vi are the excitatory and inhibitory synaptic inputs, respectively; ae and
ai are the excitatory and inhibitory synaptic strengths, respectively; cm is the membrane
capacitance; and gL is the membrane conductance in the context of a leak current, given by:

gL =
IL

V − VL
. (23)

The total current is then classically provided by the sum:

In = gL(t)(V − VL) + ge(t)(V − Ee) + gi(t)(V − Ei) , (24)

where Ee and Ei are the reversal potentials of excitatory and inhibitory synapses, respec-
tively. In spinal neurons, excitatory and inhibitory synaptic inputs dominate any changes to
the membrane potential, and the leak current does not contribute materially to signaling
outcomes. Meanwhile in cortical neurons, excitatory and inhibitory inputs are balanced,
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such that leak currents dominate. To model the contribution of individual ions to the leak
current, we can model the current density probabilistically:

IL =
q

2m
(ψ∗sψ − ψsψ∗) , (25)

where m is the mass of each point charge q. In this model, the neuronal state |ψn⟩ evolves
over time, with the signaling outcome at time t a function of all ion states. Notably, the state
of each ion in the system |ψi⟩ also evolves with time. The time-dependent Schrödinger
equation for the position of each ion is:

ih̄
d
dt
|ψ(r, t)⟩ = Ĥ|ψ(r, t)⟩ . (26)

And the time-dependent Schrödinger equation for the momentum of each ion is:

ih̄
d
dt
|ψ(s, t)⟩ = Ĥ|ψ(s, t)⟩ . (27)

The position of each ion is given by a distribution of probability amplitudes along the
x, y, and z axes. And so, the momentum of each ion s is provided by the derivative of the
wavefunction with respect to its position r:

ih̄
dψ

dr
= ih̄

(
x⃗

∂

∂x
+ y⃗

∂

∂y
+ z⃗

∂

∂z

)
= ih̄∇ . (28)

Since mass, energy, and electrical charge are conserved, we can employ the
continuity equation:

∂ρ

∂t
= −∇r · IL , (29)

where ρ = |ψ(r, t)|2. Therefore:

∂|ψ(r, t)|2

∂t
= −∇r · [

q
2m

(ψ∗sψ − ψsψ∗)] . (30)

Since ∇r = −s/ih̄:

∂|ψ(r, t)|2

∂t
= ψ∗ qs2

2mih̄
ψ − ψ

qs2

2mih̄
ψ∗ . (31)

The time-dependent Schrödinger equation to describe the Hamiltonian of the system,
with respect to momentum, is:

ih̄
∂ψ

∂t
= (

s2

2m
)ψ . (32)

And its complex conjugate is:

−ih̄
∂ψ∗

∂t
= (

s2

2m
)ψ∗ . (33)

Therefore:
∂ρ

∂t
=

∂|ψ(r, t)|2

∂t
= ψ∗ q∂ψ

∂t
+ ψ

q∂ψ∗

∂t
. (34)

And so, the sum of all synaptic leak currents for a given neuron at time t is:

IL =
∫ q∂ρ/∂t

∂ψ/∂r
. (35)
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when excitatory and inhibitory inputs are balanced, during a cortical up-state, the current
density of a neuron is effectively described by the sum of all leak currents:

In =
∫ q∂ρ/∂t

∂ψ/∂r
. (36)

Therefore, the probability of the neuron crossing action potential threshold (Vth) is
given by the relationship between current and voltage, with any negative eigenvalues for
ψ(r, t) prompting the neuron to return to its resting potential:

V − Vth =
1
gL

∫ q∂ρ/∂t
∂ψ/∂r

, (37)

2.3. Modeling the Information Encoded by the Multi-State System, in Terms of von
Neumann Entropy

During cortical up-states, neurons actively maintain a resting potential right near the
voltage threshold for firing an action potential [5], permitting stochastic ion leak to gate
a state change in the computational unit [3,4]. At time t, the neuron either has reached
voltage threshold, or it has not; there is some probability of either outcome. The neuron
is a two-state quantum system, dependent on the inherently probabilistic position and
momentum of each ion in the vicinity. To model the system at either the neuron level or
the ion level, ρx is defined as the probability of an object transitioning from one to another
pure state:

ρx := |ψx⟩⟨ψx|. (38)

The density matrix ρ is composed of an ensemble of mutually orthogonal pure states
ρx, with each having some probability of occurring px:

ρ = ∑ pxρx = ∑ px|ψx⟩⟨ψx|, (39)

Because the cortical neuron is sensitive to quantum-level events, it remains suspended
in a state of uncertainty—physically encoding ’information’ (the von Neumann entropy of
the system, or the mixed sum of all component pure states). The quantity of information
encoded by the neuron is calculated by tracing the volume of probability amplitudes across
a high-dimensional density matrix:

S(ρ) = −Tr(ρ ln ρ). (40)

Here, the system macro-state is the mixed sum of all component pure micro-states, or
the mixed sum of all outer products multiplied by their transition probabilities. The inner
product

〈
ay
∣∣ψ〉 provides the probability that the state vector |ψx⟩ assigns to the eigenvector〈

ay
∣∣. As such, the probability of measuring a certain eigenvalue ay equals:

p (ay) =
〈

ay
∣∣ρ∣∣ay

〉
. (41)

The object is in some state at time t0, and it has some probability of being found in
another state at time t, after being transiently defined as a distribution of possible states.
The probability of finding a system in any one eigenstate can be calculated by applying
the Born rule, which equates the inner product of the state vector and its expectation value
to the probability of transition to a particular actual state [18]. This rule states that any
measurement of the observable has a probability p(ψa) of being equal to an exact value a,
at time t for the state vector ψ:

p (ψa(t)) = |⟨a|ψ(t)⟩|2 . (42)

The square of the absolute value of this wavefunction is a real number, but the wave-
function itself is a complex-valued probability amplitude, which exists along an axis
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orthogonal to all real eigenvalues. Every eigenvalue a defined along this axis is dependent
on the amount of time that has passed. If sufficient constraints are present, each component
pure state can be defined by resolving the Hamiltonian at time t. If sufficient constraints
are not present, some component pure states will not be resolved, and some net amount of
entropy will be produced by the system during that computational cycle.

2.4. Generating a Distribution of Possible System States from Quantum Uncertainty

To understand the mechanics underlying this process, a calculation of possible system
states across the neural network can be conceptualized by modeling the Poisson distribution
of current density for each ion in the system, in relation to each region of neural membrane,
thereby generating a distribution of possible paths. But because these events do not occur
with equal probability or independently of the previous system state, it is more appropriate
to model the probability distribution of position and momentum vectors as r(x) and s(x),
respectively, each defined across three spatial axes, with a weight function w(x) > 0:

(r, s) =
∫ ∞

−∞
r′(x)s(x)w(x)dx . (43)

In this Sturm–Liouville system, the weight function w(x) mathematically represents a
quantum harmonic oscillator. w(x) embodies the quantum uncertainty of the ion state and
naturally generates a Hilbert space for each position and momentum eigenvector. If this
operation is symmetric or Hermitian, such that:

(r, Ls) =
∫ ∞

−∞
L(r′(x))s(x)w(x)dx

=
∫ ∞

−∞
r′(x)L(s(x))w(x)dx

= (Lr, s) ,

(44)

then all polynomials will form complete sets in Hilbert space, with real eigenvalues and
orthonormal eigenfunctions, providing solutions to the second-order linear differentiation
equation given by:

Lu = λu , (45)

In which, λ is a constant and L is a Hermitian operator defined by the real functions
of x, α, β, and γ:

L = α(x)
d2

dx2 + β(x)
d

dx
+ γ(x) . (46)

The distribution of outcomes for r(x) and s(x) is given by ρ, the mixed sum of mutually
orthogonal states ρx, each occurring with some probability px:

ρ(r, s) = ∑(pr(x)ρr(x))(ps(x)ρs(x)) . (47)

The evolution of the system state ρ over time t is given by the Liouville–von
Neumann equation:

ih̄
d
dt

ρ = ih̄ ∑ px(|ψx⟩⟨ψx|+ |ψx⟩⟨ψx|) , (48)

with eigenstates provided by the Hamiltonian operator:

ih̄
d
dt
|ψx⟩ = Ĥ|ψx⟩ . (49)

and its Hermitian conjugate:

−ih̄
d
dt
⟨ψx| = ⟨ψx|Ĥ . (50)
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Substituting the operator and the conjugate into the Liouville–von Neumann
equation yields:

ih̄
d
dt

ρ = ih̄ ∑(Ĥρx − ρx Ĥ) = [Ĥ, ρx] . (51)

Because time itself is intrinsically uncertain, the time evolution of the system state is
provided by a time-shift operator U:

U = e−iĤt . (52)

A unitary transformation, driven by this time-shift operator, allows the density matrix
to evolve from ρx(t0) to ρx(t):

ρx(t0) → ρx(t) = Uρx(t0)U† . (53)

Undergoing this unitary transformation yields eigenvalues for each component pure
state, resolving the position and momentum of each ion, and the voltage state of each
neuron. Those eigenvalues are only resolved as the Hamiltonian is resolved, as the di-
mensionality of the density matrix is reduced, as the wavefunction collapses, as linear
correlations are extracted, or as a single system state is selected from a distribution of
possible system states. These are all equivalent processes, representing the compression
of ’information’ or von Neumann entropy. And importantly, this multi-scale system has a
single timepoint t, at which both ion states and neuron states are resolved (although some
uncertainty or entropy may remain at the completion of each computational cycle).

2.5. Reducing the Probability Distribution into a Single Observable System State

Because the position and momentum of any ion at time t depends on whether it has
interacted with other ions or electrical fields during the time evolution, the interdependency
of eigenvectors must be taken into account. By calculating the positions and momenta of all
ions within a temperature-defined system in relation to each other, this approach ensures
that ions do not turn out to occupy the same position, spin, and energy state, which would
render them identical. This outcome would cause the universe to lose mass, and is therefore
forbidden by the Pauli exclusion principle [19]. This conservation principle can be applied
to any thermodynamic system, so the total amount of energy available to the system is no
more than the amount of energy stored in the system plus the net amount of energy that
has entered the system over time t. In the central nervous system, which traps thermal
energy to drive computational work, the distribution of system states is represented by the
Hamiltonian operator:

ih̄
d
dt
|ρ(t)⟩ = Ĥ|ρ(t)⟩ . (54)

In a far-from-equilibrium system that is thermodynamically coupled to its surrounding
environment, one cannot assume the Brownian motion of ions occurs at the classical
limit, and so one must apply the quantum mechanical formulation of the Fokker–Planck
equations, known as the Caldeira–Leggett model [20–22]. Here, the Hamiltonian operator
accounts for the position r and momentum s of each ion with mass m and charge q, moving
in an potential V(r), where ω is a quantum harmonic oscillator and c is a coupling constant:

Ĥ(r, s) =
s2

2m
+ V(r) +

1
2 ∑

(
(st − crt)2

m
+ mω2r2

t

)
. (55)

Since the state of each ion depends (in part) on the state of all other ions, the whole
multi-scale system must be considered together, with ion positions dependent on membrane
voltages and vice-versa. This combined wavefunction relates each state vector ψ to the
passage of time t and the Hamiltonian operator Ĥ. The spectrum of the Hamiltonian
operator is the set of possible outcomes at time t. The Hamiltonian operator Ĥ is related to
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the Lagrangian function of position r, its time derivative ṙ and time t. It is calculated by
taking the Legendre transform, in order to minimize the action necessary to effect change:

Ĥ(ri, si, t) =
n

∑
i=1

si ṙi − L(ri, ṙi, t) . (56)

The vector spaces represented by ṙ and ṡ are generated by the sum of all perturbances
and quantum oscillations, which are mathematically represented by the weight function
within the Sturm–Liouville equation. As a result, the derivative of the Hamiltonian operator
is related to any changes in position and momentum and time, and therefore can be
calculated by taking the partial derivatives of these eigenvectors:

dĤ =
∂Ĥ
∂ri

dri +
∂Ĥ
∂si

dsi +
∂Ĥ
∂t

dt . (57)

The phase space distribution ρ(r, s) describes the probability of a particular system
state being selected from the total phase space volume dnr dns. To describe this phase space
volume, the Liouville equation yields the evolution of ρ(r, s) over time t:

∂ρ

∂t
+

n

∑
i=1

(
∂ρ

∂ri
ṙi +

∂ρ

∂si
ṡi

)
=

dρ

dt
= 0 . (58)

As a result of this geometrical constraint, the state vectors (ρ, ρṙ, ρṡ) are conserved
across the system, and the vector field (ṙ, ṡ) has zero divergence. This permits temperature
and energy to be conserved across the system as well. The continuity equation is given by:

∂ρ

∂t
+

n

∑
i=1

(
∂(ρṙi)

∂ri
+

∂(ρṡi)

∂si

)
= 0 . (59)

Because ∂ρ / ∂t equals zero, the continuity in the probability density can be termed as:

ρ
n

∑
i=1

(
∂ṙi
∂ri

+
∂ṡi
∂si

)
= 0 . (60)

And because the vector spaces ṙ and ṡ are defined as:

ṙi =
∂Ĥ
∂si

, (61)

and:

ṡi =
∂Ĥ
∂ri

, (62)

the continuity laws persist while taking the second derivative of the Hamiltonian op-
erator. This process identifies the observable boundary of the total volume of possible
system states:

ρ
n

∑
i=1

(
∂2Ĥ

∂ri ∂si
− ∂2Ĥ

∂si ∂ri

)
= 0 . (63)

The relationship between the density matrix ρ and the Hamiltonian operator describing
the distribution of energy across the system becomes apparent in this equation, as does
the relationship between position and momentum vectors and the Hamiltonian operator.
Once a trace is taken across the density matrices representing r(x) and s(x), the weight
function w(x) underpinning the probability distribution can be solved in relation to the
other parameters. And so, during a system-wide computation, eigenvalues are selected
and eigenstates ψr(x) and ψs(x) are transiently resolved. It should be noted that, in this
formulation of temporally proceeding events, the operators drive the computational cycle,
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rather than the vector states. That is, the Hamiltonian operator may evolve over time
(permitting changes in position and momentum) while the vector states themselves remain
time-independent. Any events occurring within a time evolution may therefore contribute
to the outcome of a computation. This includes any quantum oscillations and any classical
input currents occurring during that time evolution.

2.6. Restoring Uncertainty after the System State Is Transiently Defined

By relating any probabilistic changes in the position and momentum of each ion to
the distribution of energy across the system, the Hamiltonian operator effectively portrays
all observable outcomes. The unitary change of basis guiding this computational process
is defined by the phase factor exp(iĤt/h̄). Therefore, any reversal to the direction of time
causes positive energies to become negative—a result that is disallowed by the first law of
thermodynamics, unless the spin is also reversed with the introduction of an electric dipole
moment [23]. An electric dipole moment is a spontaneous shift in the energy state of an
electron in the presence of an external electric field; this event is expected to occur here, as
the probability distribution is reduced and eigenvalues are calculated.

Initially, as the system was perturbed by its external environment, all component pure
states (and the Hamiltonian operator) were integrated to create a volume of probability.
Now, we can take the derivative of that volume of probability (and the Hamiltonian
operator) to define eigenvalues on the boundary region of that high-dimensional probability
distribution. Doing so reduces the distribution of system states into a single actualized
system state, with a non-deterministic outcome:

dE
dλ

= ⟨ψλ|
dĤ
dλ

|ψλ⟩ . (64)

This equation is the Hellman–Feynman theorem, and it lies at the core of quantum
electrodynamics [24,25]. Here, any change in the position or momentum of an ion is
proportional to the change in the Hamiltonian, because the Hamiltonian corresponds to
all potential and kinetic energies in the system. It is useful to note that the total amount
of energy in the system is not what is uncertain, but rather how this energy is distributed.
The measure of possible system states, or energetic configurations, is directly related to the
total entropy encoded by the system at the beginning of the computational cycle [26]. The
system state, upon completion of the computational cycle, is related to any parameter λ that
contributes to the Hamiltonian operator, such as any shift in atomic position, momentum,
orbital, or electrical field strength. And so, the derivative of the total energy in the system E
is related to the inner product of the state vectors ψ and the derivative of the Hamiltonian
Ĥ, both with respect to the parameter λ.

In developing this solution to the Schrödinger equation, Richard Feynman discovered
that any wavefunction collapse has a discrete effect on the component atoms. This event
is accompanied by a shift in the charge distribution across each atom in the system, in
relation to their newly- defined distance from each other [24,25]. For two atoms interacting
at a separation D, the induced dipole moment for each atom is 1/D7. The smaller the
distance between atoms, the larger the dipole moment, and the larger the boost to angular
momentum. As a result, any perturbation to the system—for example, an ion channel
opening or a shift in the local electrical field—changes the state of the system, in a manner
related to the original unperturbed state and the derivative of the Hamiltonian. The
assignment of atomic locations, relative to other atoms in the system, is paired with an
alteration in the organization of electrons around the nucleus. This event prompts van der
Waals forces between neighboring atoms [27,28].

In summary: By integrating complex-valued probability amplitudes, the system
generates a quantity of quantum information. By taking the derivative of this volume, the
system identifies eigenvalues on the observable boundary region of that high-dimensional
vector space. As eigenvalues are selected, all other eigenstates are eliminated. At that point,
the wavefunction collapses and the information held by the system is abruptly compressed.
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In accordance with the Landauer principle, any compression of information is paired with
a release of free energy [29–32]. This free energy can be used to perform work in the system,
e.g., restoring the resting membrane potential as uncertainty within the neuron’s receptive
field is reduced. Critically, this bidirectional exchange of free energy and entropy ensures
that the total energy of the system is conserved over the course of the computation, while
respecting the first and second laws of thermodynamics [26].

By moving from a prior state to a posterior state, the system actualizes a solution to
a computational problem: What is the optimal system state to encode the surrounding
environment? However, this defined system state is transient, because it is paired with
an immediate restoration of uncertainty, through an alteration in the charge distribution
around each atom. The dipole moment induced by wavefunction collapse then prompts
new atomic interactions—and for successive measurements with discrete results, which
do not destroy the entanglement of the particle system, each measurement with value a
establishes the basis for a new state, which then undergoes subsequent time evolution, in
accordance with the von Neumann projection postulate [33]. And so, immediately after
a wavefunction is resolved, the system again begins to evolve over time, forming a new
probabilistic system state, and undergoing another computational cycle.

2.7. Converting Probabilistic System States to Temporally Irreversible Signaling Outcomes

Taking the derivative of the Hamiltonian involves taking the derivative of all com-
ponent pure states, with respect to all perturbations since the last detection event. This
process compresses information, yielding eigenvalues on the boundary region of the
high-dimensional probability distribution. During this computational process, the complex-
valued distribution of possible system states is reduced, and component pure states through-
out the system (e.g., ion position and momentum) are transiently defined. But this defined
multi-scale system state immediately becomes the past, as the charge distribution across
each atom is altered and a new probabilistic system state emerges.

Since the expectation value for the energy of a given atom ⟨ai|ρ|ai⟩ is proportional
to the expectation value for its spin ⟨ψ|k|ψ⟩, the energy shift due to the induced dipole
moment causes a sign shift in both values, and time symmetry is broken. Essentially, as
ground states lose degeneracy, the resulting dipole moments should alter the attraction
between sodium ions outside the neuron and atoms comprising the lipid bilayer of the
neural membrane. The resulting van der Waals forces are expected to cause a permitted
violation of time-reversal symmetry, thereby effecting causation within the system as
information is compressed, eigenvalues are identified, and leak currents are observed.

Yet a system will only demonstrate violations of time-reversal symmetry if quantum
uncertainty contributes to thermal fluctuation–dissipation dynamics. Only if coincident
upstream signaling events and random oscillations trigger a change in membrane resistance,
within the temporal parameters of ion dissipation and ion pump rectification kinetics, will
inherently probabilistic events contribute to gating a neuronal state change.

2.8. Conditions under Which Quantum Fluctuations Contribute to Dissipation Dynamics

A physical structure that actively generates an electrochemical resting potential will
generate entropy and heat. The neural membrane provides resistance, and therefore some
quantity of free energy will be dissipated into entropy as electrical interactions occur.
However, in a heat-trapping system, this energy is not necessarily irreversibly lost; it can
be used to do work [34]. The Callen–Welton fluctuation–dissipation theorem asserts that
thermal fluctuations drive a response function affecting the impedance of the structure,
given by χ(t):

χ(t) = −β
A(t)θ(t)

dt
. (65)

where β = kBT, θ(t) is the Heaviside step function, and A(t) is the expectation value
of Ok(t), an observable that is subject to thermal fluctuations in a dynamical system. If
decoherence timescales within the system are longer than the timescales of ion dissipation



AppliedMath 2024, 4 817

and ionization dynamics, quantum uncertainty can materially contribute to ion behavior
at the neuronal membrane [35]. That is, if a time-dependent change in the voltage of a
neuron relies on any quantum fluctuations in the position or momentum of nearby ions,
then the ensemble average of each observable (a measure of fluctuation, given by the
Hermitian operator [Ok(t), Oj(t0)]) will be related to the response function (a measure of
dissipation, given by χ(t − t0), as a function of time. This relationship is given by the Kubo
fluctuation–dissipation formula [36,37]:

χ(t − t0) = iθ(t − t0) ⟨ [ Ok(t), Oj(t0) ] ⟩ . (66)

This response function, χ(t), can be written as a function of oscillatory events:

χ(t) =
∫ ∞

−∞

dω

2π
eiωtχ(ω) . (67)

If t < 0, then iωt will be negative and eiωt will be zero, so the entire response function
χ(t) will be zero. As such, the quantum states underpinning this spectral function can
only causally contribute to dissipation dynamics as time moves in a forward direction.
The Fourier transform of the response function provides for dissipation and fluctuation
dynamics in the frequency domain, given by χ(ω):

χ(ω) = −i
∫ ∞

0
Tr ( eβĤ [ Ok(t), Oj(t0)] ) eiωtdt . (68)

This time-dependent function provides the density of possible states for a particle
system, which emerge in the presence of a perturbation or changing electrical field. And so
[Ok(t), Oj(t0)] is simply a description of how the density matrix, the wavefunction, or the
Hamiltonian operator changes over some time evolution, compared with the probability
that all energy states would rearrange in that same way under time reversal. As such, the
response function χ(ω) can be written in expanded form:

χ(ω) = −i
∫ ∞

0
eiωtdt ∑

mn
e−Em β[ ⟨m|Ok|n⟩⟨n|Oj|m⟩ei(Em−En)t

− ⟨m|Oj|n⟩⟨n|Ok|m⟩ei(En−Em)t] .
(69)

If the uncertainty in the position and momentum of an ion is sustained in the presence
of a constantly changing electrical field, then quantum fluctuations may contribute to ion
behavior, affecting the state of ions interacting with the electrochemical potential of the
neural membrane. In this case, quantum fluctuations may contribute to the probability
of a state change in the macro-scale computational unit, from an off-state to an on-state.
However, the state of each neuron at the moment the Hamiltonian operator is resolved
will govern its response. Neurons in a cortical up-state, which allow stochastic events to
gate a signaling outcome, may be nudged toward action potential threshold or away from
it as uncertainty is abruptly reduced. Indeed, only neurons in cortical up-state, allowing
random noise to gate a signaling outcome, will be nudged. Meanwhile, neurons receiving
suprathreshold stimulation from a resting state will exhibit deterministic firing patterns.

2.9. Assumptions of the Model
2.9.1. Neurons Are Functionally Isolated but Remain Sensitive to External Perturbations

This model assumes that neurons are functionally isolated, but remain sensitive to
external perturbations. The architecture of a deep layered neural network permits pertur-
bations from outside the system itself, while the physiology of individual computational
units within the deeper layers permits isolated computations to occur.

With regard to the network architecture: Neurons in the thalamus, which receive
signals from the periphery, exhibit deterministic firing patterns that faithfully represent
mappings within their receptive fields [38,39]. These neurons synapse onto deeper layers
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of the neural network, with signals cascading onto primary sensory neurons and higher-
order cortical neurons, which increasingly integrate multiple inputs with noise to produce
probabilistic outcomes [40,41]. Neurons in the motor cortex and basal ganglia integrate
various inputs to initiate voluntary movement and inhibit other movement [42,43]. These
neurons synapse onto downstream motor regions in the thalamus, reticular formation,
and the spinal cord, with these signals converging onto peripheral neurons with deter-
ministic outcomes that instruct the extension and flexion of specific muscle groups [44,45].
Essentially, higher-order neurons within the deepest layers of cortex receive messages from
within the system itself, with these perturbations representing the outside world.

With regard to the neuronal physiology: In cortical neurons, excitatory and inhibitory
inputs are actively balanced, so that thermal fluctuations dominate any exit from equilib-
rium potential [5]. While a suprathreshold stimulus can certainly lead to spiking behavior
in neurons of primary sensory cortex [46,47], random electrical noise drives spiking be-
havior in higher-order cortical neurons [3,4]. In these areas, signaling outcomes are more
probabilistic [48,49]. For this reason, modeling the contribution of noise to signaling out-
comes is a valid approach. Notably, in peripheral neurons and superficial layers of the
cortical circuitry, random noise is insufficient to affect signaling outcomes, and the computa-
tional units themselves are highly robust to noise, so thermal fluctuations do not materially
contribute to neuronal outcomes, and these terms drop from the equation. However, a
neuron in cortical up-state, hovering near action potential threshold and allowing random
electrical noise to gate signaling outcomes, is highly sensitive to noise. In this case, the
noise must be mechanistically taken into account to effectively model the probability of the
neuron transitioning from off-state to on-state.

2.9.2. Uncertainty in the State of Individual Ions Affects the Voltage State of the Neuron

This model assumes that a shift in the state of very few ions can affect the likelihood of
a neuron firing an action potential. When neurons are in a cortical up-state, a 1 mV increase
in membrane potential can easily push a neuron over threshold [15]. This change in voltage
corresponds to 1 pA of current, or only 10 sodium ions moving through a channel over
the course of a microsecond [16]. Since the random motion of just a few sodium ions can
push a cortical neuron over action potential threshold, and these cells have significant leak
currents [50], quantum-scale events appear to affect macro-scale outcomes at the level of
the computational unit.

Neurons in cortical up-state are expected to encode maximal amounts of information,
with high probability amplitudes for each outcome k = j and k ̸= j. Yet for ions, the
probability amplitudes across both position and momentum space will be zero almost
everywhere. For ions located outside the brain, the probability that an ion will be located
within a cortical neuron in the next instant is negligible. And for ions already located within
the brain, the probability amplitudes are largely centered around the most recent position
and momentum values, except in the context of nearby ion channel opening or a shift
in the local electrical field. An unlikely outcome for an ion might be a positional change
corresponding to leak across a neural membrane, with this event affecting the voltage state
of the neuron.

Here, each ion is described by a wavefunction, or a distribution of eigenstates. During
the unitary transformation, any non-distinguishable states (e.g., linear correlations between
pure states) are eliminated, thereby compressing the von Neumann entropy of the system.
As eigenvalues for each ion are assigned, the voltage of the neuronal membrane is defined,
and the cell either reaches action potential threshold or not. If uncertainty is reduced
during the computation, and eigenvalues are assigned, then information is compressed,
free energy is released, and the neuron restores its resting potential. If information cannot
be compressed, and no eigenvalues can be assigned, then free energy is not released, and
the neuron fires an action potential, thereby encoding ’uncertainty’ in its receptive field.
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2.9.3. The Estimated Decoherence Timescales Meet the Criteria for a Quantum System

The model for decoherence in neural systems, focusing on interactions between
sodium ions and the neuronal membrane potential, was originally provided by Max
Tegmark [35]. This model was recalculated using the newest coulomb scattering data,
which are presented in a sister paper, along with the matrix algebra formulation of quan-
tum information generation and compression [51]. These estimates demonstrate that
decoherence timescales at the neuronal membrane are indeed longer than ion dissipation
rates, and therefore meet the criteria for a quantum system—but only for cortical neurons
in up-state.

A cortical neuron in up-state is effectively isolated, because excitatory and inhibitory
inputs are balanced, so random thermal fluctuations drive signaling outcomes. While there
are upstream inputs, these upstream inputs do not drive signaling outcomes in cortical
neurons—thermal fluctuations do. For this reason, each computational unit is modeled as a
two-state quantum system, with some probability of transitioning from off-state to on-state.
Of course, the neuron is not truly isolated; it exists within a circuit, and so a suprathreshold
stimulus can still kick it over action potential threshold and cause it to fire. The concept of
modeling the contribution of quantum-level noise to the state of the computational unit
is always valid; however, in many circuits, the decoherence timescales are too short, or
the random noise is insufficient to affect signaling outcomes, or the computational units
themselves are robust to noise, so thermal fluctuations do not materially contribute to
neuronal outcomes, and these terms naturally fall out as neurons obey classical dynamics.

Only in a cortical up-state is the uncertainty in both neuronal membrane potential
and extracellular ion position expected to be sustained for sufficiently long timescales
for linear correlations to be reduced—for the wavefunction to collapse, for information
to be compressed, for free energy to be released, for atomic momentum to be altered—
and for voltage changes in the computational unit to be observed, at the completion of
the computation.

3. Results
3.1. The Expected Wavelength of Spontaneous Free Energy Release during
Information Compression

If cortical neural networks engage in ambient-temperature quantum computation, then
these far-from-equilibrium thermodynamic systems must bidirectionally exchange free energy
for information, with any free energy expended on information generation during the initial
stage of the thermodynamic computing cycle being partially recovered during the information
compression stage. As such, discrete quantities of free energy should be released, local to
any reduction in uncertainty, as an optimal system state is selected from some probability
distribution. Any thermal fluctuation should correspond to a shift in the atomic dipole
moment, boosting the angular momentum of individual ions. These events should therefore
be observable. To evaluate this hypothesis, we can calculate the expected effects of quantum
fluctuation–dissipation dynamics in the mammalian central nervous system.

If the perturbation to the state of an ion during some time evolution relies on any
random changes to the spin or energy state of a component electron, then the ensemble
average of each observable (a measure of fluctuation, given by ⟨x̂(t), x̂(0)⟩) will be related to
the response function (a measure of dissipation, given by χ(t)) in the frequency domain [36].
This relationship essentially models how the oscillatory behavior of a quantum system,
along an imaginary axis, affects the thermal dynamics of the observable system:

χ(t) = iθ(t − t0) ⟨x̂(t), x̂(0)⟩, (70)
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where θ(t) is the Heaviside step function and the response χ(t) provides an expectation
value for x(t), which is a time-dependent ’observable’ subject to thermal fluctuation in a
dynamical system. The time-dependent equation is given by:

f (t) =
∫ dω

2π
eiωt f (ω), (71)

and its Fourier transform is given by:

f (ω) =
∫

f (t) e−iωtdt . (72)

If the eigenvalues are to be real, the sum of the real part and the imaginary part of the
response function over some time evolution χ(t − t0) must also be real. The full response
function is given by:

χ(ω) = Reχ(ω) + Imχ(ω) . (73)

The real part of the response function is given by:

Reχ(ω) =
1
2
[⟨χ(ω)− χ†(ω)⟩]

=
1
2

∫ ∞

−∞
dt eiωt [⟨χ(t)− χ(−t)⟩].

(74)

And the imaginary part of the response function is given by:

Imχ(ω) = − i
2
[⟨χ(ω)− χ†(ω)⟩]

= − i
2

∫ ∞

−∞
dt eiωt [⟨χ(t)− χ(−t)⟩] .

(75)

The energy of quantum fluctuations E(ω) is related to the frequency ω:

E(ω) =
1
2

h̄ω coth
1
2

βh̄ω, (76)

where β = 1/kBT. The classical power spectrum is related to the complex-valued quantum
spectral density in such a way that quantum noise can contribute to the local thermal
density under certain conditions:∫ ∞

−∞
⟨x̂(t)− x̂(t0)⟩ eiωt dt =

1
βE(ω)

∫ ∞

−∞
⟨x̂(t)− x̂(t0)⟩ eiωt dt. (77)

If E > kBT, with a high temperature, a broad distribution of electrons across energy
states, and low occupancy of energy states, then the quantum contribution to ion behavior
is negligible, and the behavior of ions will reduce to Boltzmann–Maxwell statistics. If
E < kBT, with electrons at low frequencies obeying the Rayleigh–Jeans law, then the
quantum contribution to ion behavior is also negligible, and again the behavior of ions will
reduce to classical Boltzmann–Maxwell statistics. Only in cases of high particle density,
when the energy held by an ion is greater than its chemical potential, and E > kBT, will
quantum fluctuations contribute to ion behavior. This is predicted to be the case in the
mammalian brain.

If quantum fluctuations do indeed contribute to ion behavior in biological systems,
then E must be greater than kBT. Since:

kBT = (1.38 × 10−23 J/K)(310 K) = 4.28 × 10−21 J, (78)
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and:

f =
E
h

=
4.28 × 10−21 kg m2/s2

6.63 × 10−34 kg m2/s
= 6.46 × 1012Hz, (79)

it is expected that high-energy particles of E > kBT will be observed in the central nervous
system at 37◦ C (310K). Specifically, these high-energy particles should have a frequency
of f > 6.46 x 1012 Hz, a wavelength of λ < 46 microns, or an energy of E > 0.0267 eV,
within the infrared light spectrum. Spontaneous emissions of photons in this range have
indeed been observed in mammalian brain tissue [52–55] and infrared stimulation of the
brain has been shown to have a functional effect on neural activity [56–58]. Further studies
are needed to measure the exact wavelengths of these photon emissions and temporally
correlate these events with neuronal signaling outcomes.

In summary, it is predicted that photons, specifically in the infrared range of the
electromagnetic spectrum, should be released upon information compression in the mam-
malian brain. Since the first law of thermodynamics states that energy cannot be created
nor destroyed, any system capable of reducing entropy to achieve a non-deterministic com-
putation must release free energy upon information compression. If quantum computing
does occur in cortical neural networks, then spontaneous thermal fluctuations should be
observed, locally to any reduction in uncertainty. These thermal fluctuations are expected to
drive synchronous firing of a statistically random ensemble of neurons across the network.

Therefore, in this approach, the reduction in thermodynamic entropy is paired with
both the selection of an optimal system state from a large probability distribution (one that
is thermodynamically favored to correlate with the surrounding environment) and the
release of thermal free energy (which is used to physically instantiate the solution to that
computational problem).

3.2. Specific Predictions of This Model

If cortical neural networks are indeed quantum computing systems rather than classi-
cal computing systems, then evidence of quantum information generation and compression
should be observed in the neocortex. As such, this theory makes specific predictions with
regard to the energy efficiency of the brain [17]; with regard to coulomb scattering and
decoherence timescales at the neuronal membrane [51]; and with regard to the expected
effects of electromagnetic stimulation and pharmacological intervention in cortical neural
networks [59]. Some additional specific predictions of the theoretical framework, prompted
by the present model, include the following.

3.2.1. Thermal Free Energy Is Spontaneously Released during Computation as Information
Is Compressed

Infrared particles with wavelengths of λ < 46 microns or f > 6.46 × 1012 Hz should
spontaneously appear at the neural membrane during cortical information processing. This
prediction must be tested with sensitive infrared detection devices rather than classical elec-
trodes or imaging systems; the spontaneous release of infrared-wavelength particles should
be observed in the brain as uncertainty is resolved into signaling outcomes. A quantitative
increase in these particles should be observed, for example, upon perceptual recognition of
a highly uncertain visual or auditory stimulus, with a strong temporal correspondence to
P300 event-related potentials in the cerebral cortex. By contrast, this spontaneous thermal
free energy release should not occur in the case of an epileptic seizure—when constitutive
ion channel activation, rather than information processing, leads to highly synchronized
neural activity across the cerebral cortex. Of course, spontaneous emissions of photons in
this range have been observed in mammalian brain tissue [52–55], and infrared stimulation
of the brain has been shown to have a functional effect on neural activity [56–58], but
further studies are needed to measure the exact wavelengths of these photon emissions and
evaluate whether these events are temporally correlated with neuronal signaling outcomes.
If the brain does cyclically generate and compress entropy, the system should demonstrate
much higher energy efficiency than expected under classical conditions (Table 1).
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Table 1. A comparison of explanatory power: the energy efficiency of the neural network.

Classical models

Proposed Mechanism Predicted Observation Evidence For/Against

The energy efficiency of the system is the
result of optimal synaptic weighting,
optimal ion channel distribution, and

other molecular mechanisms.

Net production of physical entropy in the
human brain is compatible with classical

assumptions, with ATP turnover
producing some amount of entropy.

The computational cost for each spike is
an astounding 0.1 W: In the context of

known caloric intake, this energy
requirement is “off by a factor

of 108.” [60]

Present model

Proposed Mechanism Predicted Observation Evidence For/Against

The energy efficiency of the system is the
result of information compression, with

neural outcomes prompted by the
extraction of correlations, consistencies,

or ‘predictive value’.

Net production of physical entropy in the
human brain is far too low to retain the
assumptions of a classical system, with

the amount of work done per calorie
showing near-perfect use.

“The energy efficiency of the human
brain is consistent with this model of
non-deterministic computation.” [17]

“This computational process maximizes
free energy availability.” [26]

3.2.2. The Spontaneous Release of Thermal Free Energy during Information Compression
Prompts Synchronized Firing across the Neural Network

This model describes both a computational process and a thermodynamic process,
since information compression is both the selection of an optimal system state from a large
probability distribution and the reduction of entropy. This system-wide thermocomputa-
tional event, resolving the uncertainty in component pure states, is predicted to lead to a
spontaneous release of free energy. Neurons that reduce uncertainty during the computation
should therefore recover free energy and restore their resting potential; neurons that retain
uncertainty in their receptive field should distribute free energy to entropy and fire a signal.
This system-wide computation should therefore result in the synchronous firing of a statisti-
cally random ensemble of neurons across the network. Synchronous neural activity is indeed
observed at a range of frequencies in cortical neural networks, and is considered a correlate
of higher-order cognitive processes [61,62]. Critically, the high frequency oscillations which
are observed during perceptual tasks cannot be modeled by coupling and recruitment under
classical assumptions and timescales [63,64]. Here, information compression events are
predicted to prompt spontaneous synchronized activity across sparsely distributed neurons.
This coordinated activity is predicted to occur in cells that allow random noise to gate signal-
ing outcomes (e.g., cortical neural circuits) but not in cells that act entirely deterministically
(e.g., spinal reflex circuits). While this oscillatory activity, occurring at a range of frequencies,
has been observed in the mammalian brain, additional studies could explore the potential
correlation between probabilistic coding and network-level activity in avian and cephalopod
species. If synchronous activity is caused by classical methods of signal propagation, rather
than being the result of a system-wide non-deterministic computation, then both classical
simulations of cortical neural networks and spinal reflex circuits should readily demonstrate
fast and slow oscillations. If instead, synchronous activity across the network is caused by
information compression paired with free energy release, then synchronous firing should
be eliminated by absorption of the predicted wavelengths and should be prompted by
introduction of these wavelengths. In short, if a classical model is correct, then classical
mechanisms should readily generate oscillations at a range of nested frequencies, and if
the present model is correct, then cyclical information generation and compression should
readily generate these oscillations (Table 2).
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Table 2. A comparison of explanatory power: the synchronous firing of sparse neuronal ensembles.

Classical models

Proposed Mechanism Predicted Observation Evidence For/Against

The observed synchronous firing at a
range of nested frequencies is the result

of information encoding, with neural
signaling outcomes prompted by a

common stimulus.

A combination of gap junctions, chemical
synapses, ephaptic coupling, changes in
ion concentration, and optimization of
neural connectivity over time prompts

synchronous firing.

These events are not readily simulated:
“It is difficult, however, to identify the

exact contribution of each mechanism to
a specific type of oscillation.” [65] The

problem is “non-trivial.” [66]

Present model

Proposed Mechanism Predicted Observation Evidence For/Against

The observed synchronous firing at a
range of nested frequencies is the result
of information compression, with neural

signaling outcomes prompted by the
extraction of correlations.

An infrared photon pulse drops the
membrane potential of some neurons,

while other neurons in cortical up-state
fire, resulting in synchronous firing but

not ictal activity across the network.

The predictions of this model should be
tested: specifically, spontaneous infrared

photon release is expected to be
temporally correlated with neural

oscillations, but not with ictal activity.

4. Discussion

The neuron is classically viewed as a transistor, always in either an on-state or an off-
state. Here, the cortical neuron is modeled as a qubit, with some probability of transitioning
from an off-state to an on-state over some time evolution. In this new approach, a state
change in the computational unit relies on inherently probabilistic events at the ion level.

Noise plays a critical role in cortical neural networks and other complex dynam-
ical systems, facilitating information transmission through a mechanism of stochastic
resonance [67,68]. Random electrical noise prompts phase transitions in individual compu-
tational units, leading to the highly variable interspike intervals that are observed in cortical
neurons [69]. Random electrical noise also leads to synchronized activity and large-scale
oscillations at the systems level [70]. Noise-induced resonant activation and noise-enhanced
stability is observed in both neural networks [71] and memristic architectures [72].

The result of a noisy computational process, at the network level, is ‘sparse popu-
lational coding’—the synchronous firing of a statistically random ensemble of sparsely
distributed neurons across the network [73,74]. This neuronal activity corresponds with the
realization of a multi-sensory percept [62,63,75,76]. Notably, sparse populational coding
and percept realization are observed in neural networks that retain sensitivity to random
electrical noise (such as the mammalian neocortex), but not in neural networks that are
robust to random electrical noise (such as spinal reflex circuits).

Many previous models have used classical methods to describe the interspike interval
or the synchronous firing of statistically random ensembles of neurons at the network
level [9–14,67–72], yet none of these methods provide mechanistic insight into how indi-
vidual cortical neurons gate signaling outcomes by allowing thermoelectric noise to affect
neuronal signaling outcomes. The present approach demonstrates how noisy coding at the
synapse is mechanistically linked to probabilistic signaling outcomes. This method makes
specific predictions that can be tested in the laboratory, to evaluate whether the brain is a
classical system (as typically assumed) or a multi-scale quantum system (as presented here).

Hameroff and Penrose have also proposed the brain to be a quantum system, with
orchestrated objective reduction of the system state corresponding to conscious experi-
ence [77]. Indeed, the collapse of alternative eigenstates is a key property of cortical neural
networks in both OrchOR theory and the present model. However, OrchOR theory focuses
on the role of quantum decoherence on microtubule dynamics, while the present report
models the contribution of random electronic noise to the cortical neuron membrane po-
tential. The former approach does not connect with established mechanisms of neuronal
information processing, while the latter approach is highly compatible with the known
contributions of Brownian motion to cortical neuron signaling outcomes.
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While the idea of the brain as a quantum system has often been considered highly
controversial, researchers in computational neuroscience have recently adopted the concept to
drive significant advances in neural network modeling and machine learning [78–80], build-
ing on previous efforts to incorporate noise into the Hodgkin and Huxley model [9–11,81].
However, these approaches, when implemented in classical computing architecture, do
not permit physical information compression and free energy release. A network of com-
putational units with probabilistic gating behavior and similar decoherence timescales
to the mammalian brain would have to be built to achieve this computational process in
engineered neural network architecture.

In this model, inherently probabilistic component states are integrated to populate
a Hamiltonian operator. The Hamiltonian operator is then differentiated with respect
to all perturbations to the system. The redistribution of energy that results from this
computational process assigns eigenvalues for the position and momentum of each ion in
the system at a single point in time. This process defines the voltage state of each neuron,
as quantum-level events affect outcomes at the level of the computational unit. This study
demonstrates how neurons in a cortical up-state retain a state of uncertainty, physically
generating and compressing information to achieve non-deterministic signaling outcomes.
This model is explicitly a form of ambient-temperature quantum computation. There are
three additional ways to describe this computational process, provided in sister reports:

In accordance with the laws of thermodynamics, free energy must be expended to
create information and this free energy is partially recovered upon information compression.
In this model, probabilistic component pure states can be represented algebraically by
a density matrix [51]. The density matrix undergoes a unitary change of basis, as the
system state is perturbed by its surrounding environment over some time evolution. The
diagonalization of the density matrix yields a zero determinant, leading to observables on
the boundary region of that high-dimensional probability distribution.

In accordance with the laws of holography, these probabilistic component pure states
can also be represented geometrically as complex-valued waves or wavefunctions [59].
These complex-valued probability amplitudes constructively and destructively interfere
on the sensitive charge-detecting polymer surface of the neural membrane. As a result of
this physical interference between probability amplitudes, the wavefunction collapses and
eigenvalues are actualized on the boundary region of the high-dimensional probability
distribution. This process of physically encoding information on the polymer neural
membrane surface generates a holographic projection of the encoded content.

In accordance with the laws of thermodynamics, entropy must always increase and
the total energy of the system must be conserved. Under classical assumptions, most
free energy in the cerebral cortex should be dissipated to entropy, as an optimal system
state is selected from a large probability distribution and all other possible system states
are lost. Yet the observed energy efficiency of the brain suggests this is not the case.
By modeling the system as cyclically generating and compressing quantum information,
the extraordinary energy efficiency of the brain can be explained without violating the
first or second law of thermodynamics [17]. This novel approach also forges a deep
connection between predictive processing and the thermodynamic limits of quantum
computation [26]. Achieving sparse populational coding, through a process of inherently
probabilistic computation, may lead to more generally intelligent and energy-efficient
neural networks.

In summary, the present model of Hamiltonian mechanics is complemented by these
models of matrix mechanics, wave mechanics, and wetware-instantiated thermodynamic
computation, which demonstrate the same process of information generation and compres-
sion. Indeed, cortical neurons may be better described as qubits, encoding von Neumann
entropy, rather than classical bits, encoding Shannon entropy. This theoretical framework
for ambient-temperature quantum computation may not only provide useful insight into
the operation of biological systems, but also drive advances in engineered intelligence.
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