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Cortical neural networks encode information about the environment, combining data across sen-
sory modalities to form predictive models of the world, which in turn drive behavioral output. Cor-
tical population coding is probabilistic, with synchronous firing across the neural network achieved
in the context of noisy inputs. The system-wide computational process, which encodes the likely
state of the local environment, is achieved at a cost of only 20 Watts, indicating a deep connection
between neuronal information processing and energy-efficient computation. This report presents a
new framework for modeling non-deterministic computation in cortical neural networks, in terms
of thermodynamic laws. Initially, free energy is expended to produce von Neumann entropy, then
predictive value is extracted from that thermodynamic quantity of information. The extraction of
predictive value during a single computation yields a percept, or a predictive semantical statement
about the local environment, and the integration of sequential neural network states yields a tem-
poral sequence of percepts, or a predictive syntactical statement about the cause-effect relationship
between perceived events. The amount of predictive value available for computation is limited by the
total amount of energy entering the system, and will always be incomplete, due to thermodynamic
constraints. This process of thermodynamic computation naturally produces a rival energetic cost
function, which minimizes energy expenditure: the system can either explore its local environment
to gain potential predictive value, or it can exploit previously-acquired predictive value by triggering
a contextually-relevant and thermodynamically-favored sequence of neural network states. The sys-
tem grows into a more ordered state over time, as it physically encodes the predictive value acquired
by interacting with its environment.

I. INTRODUCTION

Animals collect data about the world through multiple
sensory modalities, transducing physical events in the lo-
cal environment into electrical signals, then passing these
data to dedicated processing centers within the central
nervous system [1, 2]. In the cerebral cortex, informa-
tion is integrated across multiple sensory modalities and
compared with contextually-relevant predictions or ex-
pectations [3, 4]. This computational process informs the
selection of behavior [5, 6]. However, the mechanisms un-
derlying information integration and predictive modeling
at the systems level are currently not well understood.

Cortical neural networks encode both the state of the
local environment and the divergence from expectations
set by a predictive model [7, 8]. Critically, any infor-
mation that is found to have useful predictive value is
encoded into memory storage through synaptic remodel-
ing, which favors those same patterns of neural activity
to re-occur in a similar context [9, 10]. Thus, neurons co-
ordinate memory storage and processing functions within
a single computational unit. Yet this synaptic remodel-
ing is primarily a feature of cortical neurons, not spinal
neurons. Although some spike timing-dependent plas-
ticity occurs upon repetitive paired stimulation [11-13]
and after injury [14-16] in spinal circuits, cortical neurons
engage in spontaneous synaptic remodeling under stan-
dard physiological conditions [17-19]. The emergence of
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a more ordered system state in cortical neural networks
during learning and development correlates with the con-
struction of predictive cognitive models [20, 21].

Uncovering the natural processes by which cortical
neural networks form predictive models over time may
drive advances in both the cognitive sciences and the
field of computational intelligence. As information is
processed in cortical neural networks, predictive value
is extracted and stored, and output behavior is selected
in the context of both incoming sensory data and rele-
vant past experience. This massively parallel computing
process, which accesses predictive models stored in lo-
cal memory, is highly energy-efficient. Yet it is not cur-
rently well understood how the mammalian cerebral cor-
tex achieves this exascale computing power and a gener-
alized problem-solving ability at an energetic cost of only
20 Watts [22, 23]. This energetic efficiency is particularly
surprising, given that cortical neurons retain sensitivity
to random electrical noise in gating signaling outcomes
[24-27], a property that should be expected to reduce
energy efficiency.

But importantly, prediction minimizes energetic ex-
penditure. In cortical neural networks, prediction errors
provide an energy efficient method of encoding how much
a percept diverges from the contextual expectation [28,
29]. The ‘minimization of surprise’ was proposed by Karl
Friston to be the guiding force driving the improvement
of predictive models, with new information continually
prompting the revision of erroneous priors [30, 31]. This
view – embodied by ‘the free energy principle’ – asserts
that biological systems gradually achieve a more ordered
configuration over time by identifying a more compatible
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state with their environment, simply by reducing predic-
tive errors [32]. It should be noted however that ‘free
energy’ is a statistical quantity, not a thermodynamic
quantity, in this particular neuroscientific context. Like-
wise, the concept of ‘free energy’ has been employed in
the machine learning field to solve optimization problems
through a process of gradient descent [33]. For the past
forty years, researchers have striven to explain computa-
tion, in both biological and simulated neural networks, in
terms of ‘selecting an optimal system state from a large
probability distribution’ [34-36]. Yet a direct connection
between noisy coding and energy efficiency has remained
elusive. A deeper explanation of cortical computation, in
terms of thermodynamics, is needed.

In this report, a new theoretical model is presented,
tying together the concepts of computational free energy
and thermodynamic free energy. Here, the macrostate of
the cortical neural network is modeled as the mixed sum
of all component microstates – the physical quantity of
information, or von Neumann entropy, held by the sys-
tem. The extraction of predictive value, or consistency,
then compresses this thermodynamic quantity of infor-
mation, as an optimal system state is selected from a
large probability distribution. This computational pro-
cess not only maximizes free energy availability; it also
yields a multi-sensory percept, or a predictive semantical
statement about the present state of the local environ-
ment, which is encoded by the cortical neural network
state. These multi-sensory percepts are then integrated
over time to form predictive syntactical statements about
the relationship between perceived events, encoded by a
sequence of cortical neural network states. This energy-
efficient computational process naturally leads to the con-
struction of predictive cognitive models.

Since energy is always conserved, the compression of
information entropy must be paired with the release of
thermal free energy, local to any reduction in uncertainty,
in accordance with the Landauer principle [37-40]. This
free energy can then be used to do work within the sys-
tem, physically encoding the predictive value that was ex-
tracted from some thermodynamic quantity of informa-
tion. This computational process allows a non-dissipative
thermodynamic system to grow into a more ordered state
over time, as it encodes predictive value. The amount of
predictive value available during a computation is limited
by the total amount of energy entering the system over
that period of time, and will always be incomplete, due
to thermodynamic constraints. The system will therefore
respect the second law of thermodynamics and maintain
some amount of uncertainty during predictive processing.

This new approach offers a theoretical framework for
achieving energy-efficient non-deterministic computation
in cortical neural networks, in terms of thermodynamic
laws. It is also consistent with the extraordinary energy
efficiency of the human brain. In addition to this broad
explanatory power, this new approach offers testable hy-
potheses relating probabilistic computational processes
to network-level dynamics and behavior.

II. METHODS

A. Entropy is a description of
the system macrostate

For a classical thermodynamic system, the macrostate
of the system is a distribution of microstates, given by
the Gibbs entropy formula. Here, kB is the Boltzmann
constant, Ei is the energy of microstate i, pi is the prob-
ability that microstate occurs, and the Gibbs entropy of
the system is given by S :

S = −kB
∑

pi ln pi. (1)

Yet the behavior of cortical neural networks can be
better described as a statistical ensemble of microstates
[35, 36]. And so, in this model, the macrostate of the sys-
tem is formally described as a statistical ensemble of all
component pure microstates, given by the von Neumann
entropy formula [41]:

S(ρ) = −Tr (ρ ln ρ). (2)

Here, entropy is a high-dimensional volume of possible
system states, represented by the trace across a density
matrix ρ. ρ is the sum of all mutually orthogonal pure
states ρx, each occurring with some probability px. As
the encoding Thermodynamic System ‘A’ is perturbed,
by interacting with its surrounding environment, Ther-
modynamic System ‘B’, the density matrix undergoes a
time evolution, from ρAB → ρ′AB . During this time evo-
lution, consistencies can be identified between the two
particle systems [42-45]. This non-deterministic process
leads to the selection of a mutually-compatible system
state. Here, entropy is additive in uncorrelated systems,
but it is subtractive in correlated systems, as mutual re-
dundancies in system states are recognized and reduced.
This leads to the subadditivity rule:

S(ρAB) = S(ρA) + S(ρB)

= S(ρ′A) + S(ρ′B) ≥ S(ρ′AB).
(3)

A cortical neural network is a far-from equilibrium
thermodynamic system that actively acquires energy to
accomplish work. That work involves encoding the state
of the surrounding environment into the physical state
of the system itself. This theoretical approach models
the encoding process as a thermodynamic computation.
The macrostate that results from this thermodynamic
computation is not a deterministic outcome; rather, an
optimal system state is selected in the present context
from a large probability distribution. The most thermo-
dynamically favored and ‘optimal’ system state is the one
that is both most correlated with the surrounding envi-
ronment and most compatible with existing anatomical
and physiological constraints. The physical compression
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of entropy, during a computation, causes the system to
attain a more ordered state, as it becomes less random
and more compatible with its surrounding environment.

B. Thermodynamic constraints on
irreversible work

Thermodynamic System ’A’ – a cortical neural network
– identifies an optimal state in the context of its sur-
rounding environment, Thermodynamic System ’B’, by
selecting the most consistent arrangement of microstates
to encode the state of its surrounding environment. The
entropy of the combined system is minimized over some
time evolution, as consistencies are reduced. However,
there are thermodynamic limits to this computational
process. The Jarzynski equality, relating the quantity of
free energy and work in non-equilibrium systems, holds
[46, 47]. There simply cannot be more work dissipated
toward entropy generation than the amount of energy
expenditure. This relationship provides an equivalency
between the average work dissipated to create entropy,
an ensemble of possible measurements, given by W̄ , and
the change in Helmholtz free energy, given by ∆G, after
some time has passed, with β = 1/kBT :

exp (− ¯βW ) = exp (−β∆G) . (4)

Another strict thermodynamic equality, the Crooks
fluctuation theorem, holds here as well - as in any
path-dependent system state [48]. This rule relates the
probability of any particular time-dependent trajectory
(a → b) to its time-reversal trajectory (b → a). The
Crooks fluctuation theorem requires all irreversible work
(∆Wa→b) to be greater than or equal to the difference
in free energy between events and time-reversed events
(∆G = ∆Ga→b − ∆Gb→a), and demonstrates the prob-
ability of forward events in a non-equilibrium system to
be exponentially more likely than time-reversed events:

Pa→b

Pb→a
= expβ (∆Wa→b −∆G) . (5)

Any physical structure engaging in physical work will
dissipate some amount of free energy toward entropy.
However, this energy is not irreversibly lost [49]. Indeed,
the energy expended to create entropy cannot disappear,
since energy can never be created nor destroyed. And
since energy is always conserved, any compression of in-
formation entropy must be paired with the release of free
energy. This conservation law, embodied by the Lan-
dauer principle, has been empirically validated in recent
years [37-40]. Any compression of information entropy,
or reduction of uncertainty, must be paired with the re-
lease of free energy. This free energy can then be used to
do thermodynamic work within the system, by encoding
the most likely state of the surrounding environment into
the state of the neural network.

C. Thermodynamic foundations of
predictive inference

Entropy is a natural by-product of thermodynamic sys-
tems: a measure of inefficiency in doing work. Entropy
is also a description of the physical system state: a vec-
tor map of all possible states for all atoms in a thermo-
dynamic system after some time evolution. These two
definitions are tied together in a system whose ‘work’ is
computing the most optimal system state to encode its
environment. It is worth noting again that information
compression is a known physical process that generates
a discrete quantity of free energy [37-40]. This conver-
sion of physical quantities is given by the Landauer limit,
which provides the amount of energy released by the era-
sure of a single digital bit:

〈W 〉 = kBT (log2) . (6)

This concept can be extrapolated to computational
systems with any number of possible microstates that
trap energy to do computational work. The recently-
derived Still dissipation theorem demonstrates that the
quantity of non-predictive information in a system is pro-
portional to the energy lost when an external driving
signal changes by an incremental amount within a non-
equilibrium system [50]. Here, the amount of information
without predictive value is equal to the amount of work
dissipated to entropy as the signal changes over a time
course from xt=0 (the immediately previous system state)
to xt (the present state):

〈Wdiss [ xt=0 → xt] 〉 = kBT [ Imem(t)− Ipred(t)]

= kBT [ Inon−pred(t)]

= kBT [ ∆I] .
(7)

This equation stipulates that the total amount of infor-
mation stored in memory, subtracted by the amount of
information with predictive value, is the amount of non-
predictive information remaining after predictive value
has been extracted. This quantity is dissipated to en-
tropy upon the completion of the system-wide compu-
tation, and is therefore unavailable as free energy to do
work [51]. Imem is equivalent to the total amount of in-
formation generated, or the amount of uncertainty gained
by the system, over the course of a thermodynamic com-
putation. Ipred is the quantity of predictive value ex-
tracted during the thermodynamic computation. The
net quantity remaining, Inon−pred, is the amount of work
that has been dissipated to entropy upon completion of
a thermodynamic computing cycle. That net quantity
of non-predictive information is equal to the quantity of
uncorrelated states between Systems A and B, which will
always be greater than or equal to zero:

〈Wdiss [ xt=0 → xt] 〉 = kBT [ ∆I] ≥ 0

= kBT [ S(ρ′AB) ] .
(8)
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As uncertainty increases, entropy is produced, and less
free energy is available within the system to do work. As
uncertainty decreases, entropy is compressed, and more
free energy is available within the system to complete
tasks, such as remodeling synapses. A system that en-
codes its environment can therefore become more ordered
by interacting with its local environment and identifying
correlations. It is even thermodynamically favored for a
system to take on a more ordered state over time, as
it encodes predictive value gained by interacting with
its surrounding environment [52-54]; indeed, the prun-
ing of neural pathways during learning and development
would not spontaneously occur if this were not the case.
Here, the spontaneous emergence of a more ordered sys-
tem state naturally emerges over time, from a process of
thermodynamic computation – as some quantity of in-
formation entropy is generated and compressed, through
the extraction of predictive value. However, the first and
second laws of thermodynamics are always respected - en-
ergy is never created nor destroyed, and there is always
some net dissipation of energy to entropy over time.

III. RESULTS

A. The first law limits the amount of predictive
value in a quantity of information

In accordance with the second law of thermodynam-
ics, entropy must always increase over time. However,
far-from-equilibrium particle systems - which trap heat
to do work - can either increase or decrease disorder lo-
cally. To prevent a violation of thermodynamic laws,
free energy must be dissipated toward work whenever
the system state becomes more ordered. Any reduction
of uncertainty (kBT [∆I] = T∆S) must be balanced by
an increase in free energy (∆G), to balance the total en-
ergetic account. Any inefficiency in operations increases
entropy, while a more ordered system state increases the
amount of energetic currency available to do work.

The lower the value of T∆S, the greater the amount of
free energy available to the system. The quantity of free
energy can be maximized in two ways: 1) if the system
does not generate much uncertainty or entropy (with the
value of Imem(t) approaching zero), or 2) if the entropy
generated by the system over time t has a large amount
of predictive value that can be extracted (with the value
of Imem(t) − Ipred(t) approaching zero). The reduction
of possible system macrostates, or the compression of in-
formation entropy, is equivalent to the extraction of pre-
dictive value. This computational process is thermody-
namically favored, because it provides the system with
more available free energy.

If the quantity of information contains internal consis-
tencies, that quantity is naturally reduced or compressed.
Any redundant or compressible entropy (e.g. possible
system states that are identical to previous system states)
are highly predictable and are easily accepted. Con-

versely, information that is unreliable or anomalous (e.g.
neural signals that are more likely to be errors than accu-
rate reporting of stimuli) reduce the amount of predictive
value available to the system, providing a measure of in-
efficiency or wasted energy.

It is useful for a thermodynamic computing system
to direct attention toward a novel stimulus, in case
that event provides useful predictions about subsequent
events. If predictive value is successfully extracted from
the information generated, there is little net energetic
cost to the initial energetic expenditure. The free energy
that is released by reducing uncertainty and maximizing
predictive value is recovered and made available to do
work within the system. In this model, a cortical neural
network continually acquires information about the lo-
cal environment through the sensory apparatus, encod-
ing physical events into the probabilistic macrostate of an
ensemble of computational units. Extracting predictive
value from this ‘information’ maximizes the free energy
that is available to the system. This free energy can be
used to implement structural change, leading to a more
ordered system state that encodes the predictive value
acquired during the computation.

Yet there is a limit to the amount of predictive value a
system can have. Any system that gains a more ordered
state has reduced the quantity of disorder or entropy;
this may be true for a local, non-closed thermodynamic
system, but it cannot be true for a closed system or the
universe as a whole, because there must be some exter-
nal energy source driving this computational work. The
total information created by the system is limited by the
amount of energy entering the system ∆E. Of the to-
tal information generated by the thermodynamic system,
some amount will have predictive value, but the predic-
tive value available will be limited by the total quantity
of information held by the system. If the quantity of pre-
dictive value gained is greater than the amount of caloric
energy expended to generate entropy, then the quantities
in Eqs. 7 and 8 would be negative, and energy would be
created by the thermodynamic system through the act of
information processing alone. Since the creation of en-
ergy is explicitly forbidden by the first law of thermody-
namics, the amount of predictive value is limited by the
amount of energy available to the system. As such, any
thermodynamic system gaining a more ordered state by
extracting predictive value must generate an incomplete
predictive model.

If a thermodynamic computing system were ever to
reach perfect predictability for all computable state-
ments, with Imem(t) = Ipred(t), all memory in the system
would be erased, and there would be no information re-
maining to have predictive value. Therefore, no memory
can continue to exist for any period of time with 100%
predictive efficiency. If the value of Imem(t) − Ipred(t)
were to reach zero, all system memory would be erased,
and the system would spontaneously become disordered.

This simple model demonstrates that extracting pre-
dictive value is both a thermodynamic process and a com-
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putational process. The first law of thermodynamics lim-
its the amount of energy expended toward and recovered
from entropy; this total quantity of energy turnover is
constrained by the net quantity of energy entering the
system. Since the physical process of compressing in-
formation is dependent on parsing predictive value, as
provided in Still’s equation, the quantity of disorder lost
through computation must be equivalent to the amount
of predictive value extracted by the system. Yet some
disorder must always remain. If a system is perfectly
ordered and perfectly predictive, it will cease to oper-
ate. Continued thermodynamic operation requires some
uncertainty.

B. The predictive value in any set of computable
statements will always be incomplete

In mathematical logic, any set of axioms which makes
statements of truth is inherently limited and necessar-
ily incomplete. It is useful to consider this rule on its
own terms, before assessing whether it applies to physi-
cal systems performing logical operations. Gödel’s first
incompleteness theorem provides that there will always
be statements within a set of axioms which are true but
cannot be proven or disproven within the set of axioms
itself. Gödel’s second incompleteness theorem states that
any set of axioms cannot contain any proof for the con-
sistency of the set of axioms itself. As such, any logical
system that evaluates both the internal consistency or
‘truth’ of computable statements and the relationship of
these statements to each other is necessarily incomplete
[55, 56].

These two incompleteness theorems assert that a set of
axioms cannot be both completely true and completely
known. Any number of statements can be held to be
semantically true; the limit applies to full knowledge of
their syntactical relationships. Eqs. 7 and 8 show that
this law of mathematical logic must be true for any ther-
modynamic computing system. Over time, any number
of semantical statements may be decided by a system.
If the system does not hold all semantical statements
about the universe, then there will also be syntactical
relationships that are not known, and its knowledge is
incomplete. If the system does hold all semantical state-
ments about the universe, then knowing all syntactical
relationships between these axiomatic statements would
complete the predictive value of the system. Once all
knowledge is complete, the thermodynamic system be-
comes completely ordered. With no uncertainty, there is
no remaining entropy. The memory of the system would
be completely erased, as all entropy is converted to free
energy, and the system would become disordered once
again. Continued thermodynamic operation requires un-
certainty, and thus, incompleteness.

This result is perhaps not surprising, as the relevance
of incompleteness in relation to computing was formally
addressed a century ago by the Entscheidungsproblem, or

decision-problem, proposed by Hilbert and Ackermann,
which posed the question of whether an algorithm or
computer could decide the universal validity of any math-
ematical statement [57]. Church and Turing quickly rec-
ognized there could be no computable function which
determines whether two computational expressions are
equivalent, thereby demonstrating the fundamental in-
solvability of the Entscheidungsproblem and the prac-
ticality of Gödel’s incompleteness theorems in terms of
computable statements [58, 59]. Here, it is demonstrated
that incompleteness is a fundamental limitation during
the thermodynamic extraction of predictive value.

If no true-false decision can be made with regard to
the relationship between computable statements, then
the predictive value Ipred of the system is incomplete.
As a result, some amount of work must be dissipated to
∆I, as unresolved information which simply cannot be
reduced (yet) into a decisional outcome. Given the phys-
ical impossibility of computing the universal truth of all
syntactical relationships between semantical statements,
there will always be some value of Inon−pred and there-
fore a net positive amount of free energy dedicated to
∆I during a thermodynamic computation, in accordance
with the second law of thermodynamics. Yet it is possible
to minimize this quantity of ∆I, as predictive value is ex-
tracted: If a decision can be made, uncertainty is reduced
and the system state encoding that predictive statement
is selected from a distribution of possible system states.

C. A single thermodynamic computation yields a
predictive semantical statement

In this model, a neural network selects an optimal sys-
tem state, by extracting predictive value to make consis-
tent statements about its surrounding environment. By
parsing for predictive value, the encoding system takes
on a more compatible state with its surrounding environ-
ment during the process of thermodynamic computation.

Although entropy is generated by the system, predic-
tive value can be extracted, reducing the distribution of
possible system states. During each computation, noise
is filtered out and anomalies are detected; the most ap-
propriate system state is selected, in the context of the
surrounding environment. This computation is based on
both incoming sensory data and the biophysical proper-
ties of each encoding unit.

During the computation, incoming sensory data is
noisily encoded into the neural network and integrated
into a system macrostate. The system macrostate (a
physical quantity of information) is defined as the mixed
sum of all component microstates, which evolve over time
t. The system state is then resolved as consistencies are
reduced and predictive value is extracted. During this
computational process, information is compressed, free
energy is released, an optimal system state is selected
from a large probability distribution, and all other pos-
sible system states are discarded.
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This computation effectively encodes a semantical
statement about the local environment, or a ‘percept’,
such as a simultaneous flash of light and a loud noise. Be-
cause this semantical statement is essentially a predictive
model of the state of the world at the present moment,
constructed from multiple sensory inputs, a reasonable
decision in the context of any remaining uncertainty is to
orient attention toward any novel or anomalous stimuli,
in order to gather more information which might hold
additional predictive value. Critically, any information
gathered that is not consistent with previously-gathered
information or concurrent information is likely to be dis-
carded. This efficiency may lead to perceptual errors,
particularly in the presence of unexpected events.

Here, a multi-sensory percept is a ‘semantical state-
ment about reality’, which corresponds to synchronous
firing across the neural network, as the system performs
work to encode that predictive statement. A series of
percepts can then be integrated across the time domain.
A sequence of semantical statements about the surround-
ing environment, corresponding to a sequence of system
states, enables the construction of ‘a syntactical state-
ment about reality’ or a predictive cognitive model of the
likely cause-effect relationship between perceived events.

D. A sequence of thermodynamic computations
yields a predictive syntactical statement

While entropy can decrease during the course of a
computational cycle, through the extraction of predictive
value, some amount of non-predictive value will always
remain. In short, not all entropy can be compressed in
a single computational cycle, because not all predictive
value can be extracted. The relationship of that percept
to subsequent events remains uncertain. This uncertainty
can only be reduced by extracting additional predictive
value. The system may integrate a temporal sequence of
neural network states, encoding a temporal sequence of
semantical statements, and extract a prediction regard-
ing the likely cause-effect relationship between these per-
ceived events. thereby creating a predictive model of the
syntactical relationships between semantical statements.

During a single thermodynamic computation, the neu-
ral network encodes the most likely state of its surround-
ing environment. These computations can also be inte-
grated over time, corresponding to a sequence of neural
network states which encode a likely sequence of events
occurring in the environment. Now, the amount of infor-
mation held by the neural network is given by integrat-
ing the distribution of system macrostates over a longer
timescale t, with this thermodynamic quantity equivalent
to the net amount of free energy expended to produce en-
tropy over multiple computational cycles. Any entropy
that is not compressed or discarded during a single com-
putational cycle remains available for further parsing.

Over the course of a single computational cycle, only
semantical truth statements can be ascertained (e.g.

there is a bright flash and a loud noise, with the coin-
cident stimuli both emerging from the same approximate
location). In that instant, there is no predictive value
to assign syntactical relationships between these stimuli
and any subsequent outcomes (e.g. these stimuli imme-
diately precede some aversive or rewarding outcome for
the observer). If these stimuli have been previously ob-
served, with no adverse outcome, the stimuli may be tol-
erated (e.g. this combination of percepts is likely to be
part of the annual fireworks display). Alternatively, if
the stimuli have been previously observed, with an out-
come that potentially affects survival, a decision can be
taken to reduce the expected risk (e.g. this combination
of percepts is likely to indicate gunfire nearby). If the
stimuli are novel, they may be attended carefully. In the
absence of contextually-relevant knowledge, gained from
prior experience, the system must integrate information
over multiple computational cycles and extract predic-
tive value. Any new information gained by the system
about its environment during a single computation has
uncertain predictive value; this information cannot be
fully reduced and therefore must be stored in working
memory. However, the immediately subsequent moment
may yield more information, permitting the system to as-
sign some predictive syntactical relationship between the
previously-acquired information and the incoming infor-
mation (e.g. the neural network can decide whether this
perceived stimulus combination is likely to indicate an in-
nocuous or life-threatening event, and direct movement
according to this cognitive model). If a stimulus has high
predictive value, gained from prior experience, it may be
thermodynamically favored for some particular sequence
of neural network states to ensue, triggering stereotyped
behavior in that context.

Overlapping computational cycles may occur, with dif-
ferent timescales, as neural network states are temporally
integrated. Short sequences of events may be fused to-
gether tightly, with the amount of predictive value deter-
mined in part by the salience and temporal contingency
of sensory cues. Longer sequences of events may be tied
together by common contextual cues or patterns of sen-
sorimotor input-output behavior; these extended compu-
tations may include a multitude of shorter sequences. In
each case, the extended computation includes semanti-
cal statements which are predicted to be syntactically
related in some way. By integrating individual computa-
tions, each with some value of Inon−pred, into a sequence
of computations, the system can extract additional pre-
dictive value.

A series of events with high predictive value will com-
press the quantity of entropy, thereby releasing free en-
ergy into the system to do work. Indeed, any time
the system gains predictive value, it must balance the
account by dissipating free energy toward work. Free
energy is dissipated toward work, for example, as the
system undertakes spontaneous structural remodeling to
gain a more ordered system state, thereby encoding the
predictive value acquired through lived experience. This
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synaptic remodeling process thermodynamically favors
the re-occurrence of sequential neural network states
and stereotyped behaviors in predictable contexts. This
emergence of a more ordered state allows the organism to
more easily navigate familiar environments, minimizing
inefficiency and maximizing available free energy.

E. Thermodynamic computation yields a trade-off
between exploration and exploitation

In this model of thermodynamic information process-
ing, a single computation yields a ‘semantical’ statement,
while temporal sequences of neural network states encode
‘syntactical’ statements. Over a lifetime, the neural net-
work steadily acquires a more ordered state but cannot
achieve full predictive value, due to the constraints dis-
cussed in Sections IIIA and IIIB.

Any information generated will be parsed for predic-
tive value – and the more predictive value extracted from
the information, the more free energy is released to do
work. As the system performs work to remodel itself
into a more organized state, disorder is reduced, less en-
tropy or uncertainty is produced, and more free energy is
available to the system - as long as the system continues
to navigate familiar contexts.

This computational process is highly energy-efficient,
because consistency minimizes uncertainty and maxi-
mizes free energy availability. In this model, a thermo-
dynamic computing system will both expand its quantity
of information, by engaging in exploratory behavior to
acquire predictive value, and reduce its quantity of in-
formation, by exploiting previously-acquired predictive
value and favoring previous patterns of neural activity.
These two processes perform in opposition, with any de-
cisional outcome relying on the minimization of energy
dissipation. The rival energetic cost function leads a neu-
ral network to explore its environment, gaining predictive
value, and to engage in habitual patterns of behavior, ex-
ploiting that predictive value in familiar contexts.

Each computation cycle culminates in a decision, with
any output behavior dependent upon this rival energetic
cost function. If the system predicts its own knowledge to
be insufficient to navigate the present situation, the sys-
tem will further explore its environment to gain informa-
tion. If predictive value can be extracted, the information
is compressed and there is little net energy expenditure to
do that work, although there is an up-front expenditure.
The system then remodels itself to encode that newly-
acquired predictive value. If the system predicts its own
knowledge to be sufficient to navigate the situation, the
system will exploit any relevant previously-gained pre-
dictive value to select a contextually-appropriate action.
If patterns of neural firing and behavior are readily ac-
tivated by a familiar stimulus, with minimal uncertainty
during the task, little net energy expenditure is needed
to compute the decision.

F. Predictions

This theoretical approach to modeling non-
deterministic computation in cortical neural networks
makes some specific predictions with regard to the
energy-efficiency of the brain [60], the spontaneous
release of thermal free energy upon information com-
pression [61], and the contribution of these localized
thermal fluctuations to cortical neuron signaling out-
comes [62]. This approach also makes specific predictions
about the expected effects of electromagnetic stimulation
and pharmacological interventions on perceptual content
[63]. Some further predictions of the theory, prompted
by the present model, include:

1. Thermodynamic computation drives synchronous firing
of cells at a range of frequencies

In this model, a thermodynamic computation yields a
predictive semantical statement regarding the most likely
state of the surrounding environment, in a manner lim-
ited by the range and sensitivity of the sensory appara-
tus. As information is compressed, a single system state
is realized and all other possible system states are dis-
carded. Thus, the realization of a multi-modal ‘percept’
corresponds to the synchronous firing of neurons across
the network, at a periodic frequency tied to the length of
the computation. Yet the syntactical relationship of that
semantical statement to ensuing events remains uncer-
tain. As a result, these individual computations, yield-
ing ‘percepts’, may contribute to temporal sequences of
neural network states, paired with information content,
yielding a predictive cognitive model of causal relation-
ships between perceived events. As predictive value is
extracted, information is compressed over these longer
timescales. Thus, these sequences of computations are
predicted to result in synchronous firing at much slower
frequencies. During wakeful awareness, both semantical
and syntactical information is being parsed, so both fast
and slow oscillations should be observed. This predic-
tion of synchronous neural activity at nested frequencies
is consistent with empirical observations in the cerebral
cortex [64-66]. During sleep, incoming sensory data is not
being evaluated and so only syntactical relationships be-
tween previously-stored information is being parsed; as a
result, sleep should be characterized by synchronous ac-
tivity only at slower frequencies. This prediction is also
consistent with empirical observation [67, 68]. These syn-
chronous firing events are predicted to be disrupted by
the absorption of thermal free energy release at relevant
frequencies, or the random introduction of free energy.
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2. Thermodynamic computation drives spontaneous
remodeling of the encoding structure

The quantity of predictive value extracted during a
computation is equivalent to the amount of information
entropy compressed during that computation; this quan-
tity must be exactly balanced by the amount of free en-
ergy released into the system and the amount of work
then dissipated toward creating a more ordered system
state. This work is expected to involve locally optimiz-
ing the system to encode the acquired predictive value
(e.g. by remodeling the neural network structure to ther-
modynamically favor a certain pattern of neural activ-
ity in a predictive context). In short, the extraction of
predictive value should be paired with the dissipation of
work toward creating a more ordered system state which
encodes that predictive value. Of course, cortical neu-
rons are already known to spontaneously remodel their
synaptic connections to encode learned information [9].
This structural remodeling is prompted by participation
in network-wide synchronous activity [19] and has been
shown to affect each synapse in proportion to its ini-
tial contribution [10]. While the molecular mechanisms
underlying synaptic plasticity are well-established, this
theoretical model describes the relationship between free
energy, entropy minimization, and spontaneous directed
work, as uncertainty is resolved. Here, it is predicted
that spontaneous self-remodeling is a natural output of
a thermodynamic computation, in which predictive syn-
tactical relationships are encoded in sequences of neural
network states. Any unique sequence of neural activity
is therefore expected to uniquely match representational
information content. Alterations in information content
should be paired with a conformational change in the en-
coding structure, to store the freshly-parsed information;
conversely, any impairment to the encoding structure
should be paired with a loss of stored information con-
tent. If instead the null hypothesis is true, and activity-
dependent synaptic remodeling can be entirely explained
by classical mechanisms, then this process should not be
localized to synapses that have reduced uncertainty and
should not be dependent on parsing predictive value to
maximize free energy availability.

3. Thermodynamic computation yields an
exploration/exploitation dynamic in behavior

In this model, the system identifies a compatible state
with its surrounding environment, by maximizing pre-
dictive value or consistency. To gain predictive value, it
is necessary to collect data from the environment, parse
that dataset for predictive value, compress information,
and subsequently encode that predictive value into the
encoding structure, so this encoding system state is fa-
vored to repeat in a similar context. It is useful to attend
to any incoming data that does not match existing predic-
tive models, because this discrepancy signals a valuable

opportunity to update the cognitive model with this new
information. Therefore, a decision on how to act, given
the incoming information, will rely on a rival energetic
cost function: If knowledge is predicted to be sufficient to
navigate the situation, the organism is unlikely to engage
in exploration to gain additional predictive capacity. If
knowledge is predicted to be insufficient to navigate the
situation, the organism is likely to engage in exploration.
Any change in the predicted risk of energy dissipation for
exploration or non-exploration will shift the probability
of exploration.

4. Thermodynamic computation carries the risk
of predictive error

This model of thermodynamic computation is extraor-
dinarily energy-efficient. However, two types of ineffi-
ciencies can occur. If existing knowledge is not exploited
in familiar situations, time and energy may be wasted.
If the consistency and predictive power of a new cogni-
tive model is ignored in favor of holding onto a previous
cognitive model, time and energy may also be wasted.
While the former leads to unnecessary dissipation of en-
ergy toward exploration, the latter leads to potentially
missing critical information. Some organisms may select
the short-term savings gained by holding onto a previous
cognitive model over the potential long-term energetic
savings gained by deconstructing that cognitive model
and constructing an improved model in its place.

To explore what might be true about the world, it is
necessary to sacrifice time and energy resources for un-
certain reward, with the prediction that this process will
be worthwhile in the long term. In this theory, mental
exploration takes thermodynamic work – and some indi-
viduals may opt not to engage in the process, with the
prediction there will be no payoff in doing so.

Exploration exposes the organism to uncertainty,
thereby generating information with potential predictive
value, while exploitation of knowledge that was previ-
ously gained through exploration makes good use of that
predictive value. Ignoring incoming information may re-
duce energetic costs in the short term, but this strategy
can impair prospects for survival in the longer term, so
it is useful to accurately assess when knowledge is insuf-
ficient. The organism must compute the likely energetic
cost of exploration against the potential cost of making
a predictive error. For this reason, it is predicted that
an individual capability for parsing information - and
discarding inaccurate cognitive models in favor of more
accurate cognitive models – will provide a selective ad-
vantage, which should lead to measurable differences in
survival outcomes when environmental conditions sud-
denly shift.
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IV. DISCUSSION

The extraordinary energetic efficiency of the central
nervous system has been noted, particularly amongst
theorists who query whether this competence is intrin-
sically linked to the physical production of information
entropy [69, 70] or the exascale computing capacity of
the brain [32, 71]. In this model, energy is indeed being
expended on entropy production – but rather than being
irreversibly lost, this quantity is parsed during a peri-
odic computational cycle of information generation and
compression. Since unlikely or unfamiliar system states
may hold predictive value, the quantity of entropy may
be expanded to accommodate a new system state, even
at an energetic cost, in order to reduce uncertainty in the
longer term.

Interestingly, there are limits to the amount of predic-
tive value in a quantity of information. These limits are
given by the first law of thermodynamics. Indeed, any
system that takes on a more ordered state has essentially
reduced its entropy over the course of a computational
cycle. But the amount of free energy that is dedicated
toward ordering the system state cannot be greater than
the amount of free energy that is gained through infor-
mation compression. Some amount of work must also be
dissipated to uncertainty, since having complete predic-
tive value and continued operation is thermodynamically
impossible. As such, there are intrinsic thermodynamic
limits to the amount of work being done by the system
and thermodynamic limits to the completeness of its pre-
dictive capacity.

A single computational cycle will both resolve the neu-
ral network state in the present moment and generate
a semantic statement about the external environment,
which is validated by orienting toward incoming sensory
information. These semantical statements are held in
working memory, and then integrated with subsequent
neural network states to compute any syntactical rela-
tionships. Holding untrue semantic statements as true,
and attempting to use these statements to form syntac-
tical relationships with other semantical statements, is
equivalent to energetic inefficiency. Yet information con-
tent which may have accurately reflected reality in some
context could simply be inaccurate in a different con-
text; the ability of the system to recognize the difference
is largely determined by how effectively the neural net-
work structure had been remodeled to encode that in-
formation. If the neural network remains adaptable, not
completely ordered, more nuanced complexities can be
noted and more predictive value can be gained, at some
energetic expense.

This process of thermodynamic computation results in
a rival energetic cost function, to maximize free energy.
This rival energetic cost function drives a system to ei-
ther maximize entropy production through exploration,
to gain predictive value, or minimize entropy production
through exploitation, to make effective use of previously-
acquired predictive value. The system must first expend

energy to generate information, then recover energy by
compressing information. That free energy is then used
to remodel the encoding structure itself, to store that pre-
dictive value, thus thermodynamically favoring the reoc-
currence of sequential system states in a relevant or famil-
iar context. The maximization of free energy is readily
accomplished through cycles of information generation
and compression, or by relying on the optimized system
state that was already achieved by that process. The
timescales of computations may overlap, with individual
computations that encode multi-sensory percepts being
integrated into short sequences of neural network states
which encode possible relationships between perceived
events. The overall temperature and energy flux of the
system remain constant, permitting the non-equilibrium
system to act as a net heat sink. In this view, neural net-
works – acting in accordance with the laws of thermody-
namics – are expected to physically process information,
undergoing non-deterministic computation.

Physically compressing information, by extracting pre-
dictive value, yields a single neural network state, en-
coding the likely present state of the local environ-
ment. The incompleteness of information compression
in any single computational cycle leaves some entropy
remaining, which can then be parsed for predictive value
over longer timescales. By integrating information over
longer timescales, the neural network may integrate tem-
poral sequences of consistent system states to build
predicted cause-effect relationships between perceived
events. These mental models – which make predictions
about the general structure and operation of the physical
world; the likely behavior of other people, animals, and
things in the environment; and the most effective way
of acting in response to certain stimuli – are expected
to be formed by thermodynamic computations occurring
across the lifetime.

There is a long-standing ontological issue regarding the
relationship between information and entropy. Both con-
cepts describe the sum of all possible system states, so
resolving this issue lies at the heart of thermodynamic
computing. Biological neural networks are thermody-
namic systems that produce entropy, like any other par-
ticle system. Yet unlike other entropy-producing ther-
modynamic systems – such as the steam engine – a bi-
ological neural network computes information, reducing
disorder or randomness into a more optimal system state,
with the system growing increasingly ordered over time
as it interacts with its environment. In this model, neu-
ral networks both generate information and parse that
information for predictive value. It is useful here to con-
sider ‘information’ as both the sum of all possible system
states (its mathematical definition) and the meaning ex-
tracted from a messy dataset (its colloquial definition).
In this theoretical model, these are two stages of the same
computational process. As neural networks produce von
Neumann entropy, they are physically producing disorder
– a set of possible system states, or the mathematical def-
inition of information. However that information is only
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useful if predictive value is extracted, a distribution of
system states is compressed into a single outcome, free
energy is released back into the system, and that free en-
ergy is used to remodel the encoding structure to store
that predictive value. In other words, any thermody-
namic system can create a distribution of possible system
states, thereby producing entropy. But only a thermo-
dynamic system capable of compressing that probability
distribution into a single actualized system state will then
parse consistency or predictive value from that informa-
tion, store that predictive value for future use, and recall
those predictions in relevant contexts.

Here, the outcomes of cortical neuron computations
are expected to be non-deterministic, but not statisti-
cally random; they will naturally encode the ‘best match’
between the system and its local environment. This ap-
proach fits well with other recent models emphasizing the

role of contextual cues [72] and cost calculations [73] in
decision-making. Usefully, this new model introduces a
thermodynamic basis for predictive processing, with the
extraction of predictive value physically minimizing en-
ergy dissipation. As a result, any far-from-equilibrium
thermodynamic system that traps heat to perform com-
putational work will inevitably cycle between expanding
the distribution of system states and pruning toward a
more optimized system state. This computational pro-
cess naturally yields an exploration/exploitation dynamic
in behavior and the gradual emergence of a more ordered
system state over time.
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