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In cortical neurons, spontaneous membrane potential fluctuations affect the likelihood of firing
an action potential. Yet despite retaining sensitivity to random electrical noise in gating signaling
outcomes, these cells achieve highly accurate computations with extraordinary energy efficiency. A
new approach models the inherently probabilistic nature of cortical neuron firing as a thermodynamic
process of non-deterministic computation. Typically, the cortical neuron is modeled as a binary
computational unit, in either an off-state or an on-state, but here, the cortical neuron is modeled
as a two-state quantum system, with some probability of switching from an off-state to an on-state.
In this model, the membrane potential is described as the mixed sum of all component microstates,
or the quantity of von Neumann entropy encoded by the computational unit. This distribution of
macrostates is given by a density matrix, which undergoes a unitary change of basis as each unit,
’System A’, interacts with its surrounding environment, ’System B’. Any linear correlations reduce
the number of distinguishable pure states, leading to the selection of an optimal system state in the
present context. This process of information compression is shown to be equivalent to the extraction
of predictive value from a thermodynamic quantity of information.

I. INTRODUCTION

Mammalian spinal reflex circuits reliably transmit in-
formation, with signaling outcomes that are easily pre-
dicted by analyzing upstream activity [1-3]. Meanwhile,
cortical neuron firing patterns are highly unpredictable
[4], with stochastic ion leak and spontaneous subthresh-
old fluctuations in membrane potential significantly con-
tributing to the likelihood of firing an action potential
[5, 6]. Unlike spinal reflex circuits, which are robust to
this kind of random electrical noise, cortical neurons ac-
tively manage excitation and inhibition to achieve a coor-
dinated ‘up-state’, hovering near action potential thresh-
old and allowing random noisy events to drive signaling
outcomes [7]. A major challenge in modern neuroscience
is understanding how noisy coding at the synaptic level
can be reconciled with the accurate and energy-efficient
coding that is observed at the neuronal population level.

The Hodgkin-Huxley equations provide a good approx-
imation for predicting cortical neuron firing patterns un-
der steady-state conditions [8]. Repetitive firing patterns
even emerge in this model when differentiating with re-
spect to time and applied current density [9, 10]. Linear
approximations of the Hodgkin-Huxley model also ac-
curately predict shifts in membrane potential, as long as
temperatures are below 27°C and the region of membrane
being modeled is above 200 square microns in size [11].
But it is worth noting that the underlying relationship
between membrane voltage, ion conductances, and chan-
nel activation – given by these four partial differential
equations – must ultimately be described by either mod-
eling all eigenvectors in the system along real and com-
plex planes, or by modeling a Hopf bifurcation to find the
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critical point where the cortical neuron flips from an off-
state to an on-state [12-14]. Both of these deeper models
essentially describe quantum processes, utilizing imagi-
nary axes to approximate the contribution of inherently
random events to signaling outcomes.

In the classical view, neural computations are encoded
by the relative timing or rate of action potentials [15, 16].
With this approach, the neuron is essentially modeled
as a transistor – always in an on-state or an off-state,
spiking or not spiking. A new model, presented here,
formalizes the inherently probabilistic nature of cortical
neuron firing, with each cell computing the probability of
transitioning from an off-state to an on-state. Using this
approach, the cortical neuron encodes far more informa-
tion than its Shannon entropy; it encodes von Neumann
entropy, or the mixed sum of all component microstates.
Here, the cortical neuron is a two-state quantum sys-
tem, with some probability of firing an action potential.
Since the present voltage state of the macro-scale compu-
tational unit is dependent on inherently random events,
this method models the state of a cortical neuron as the
mixed sum of all component microstates, or the physical
quantity of information held by the computational unit.

Here, the probability of a cortical neuron firing an ac-
tion potential is explained in terms of how Gibbs free
energy is expended to create von Neumann entropy, or
a distribution of possible macrostates. This approach
therefore models how probabilistic coding in cortical neu-
rons creates a thermodynamic quantity of information.
Uncertainty is then resolved during a unitary change of
basis, as each cortical neuron, ‘System A’, thermodynam-
ically favors a compatible state with its surrounding en-
vironment, ‘System B’. This model of quantum coding
is well-established in the literature [17, 18], and is ap-
plied here to cortical neurons. This mathematical model
of a time-evolving system state, given in terms of matrix
mechanics, yields an iterative cycle of information gener-
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ation and compression – with free energy being physically
expended toward information generation and partially
recovered upon information compression, in accordance
with the Landauer principle [19-22]. At the completion
of the computation, as uncertainty is reduced, informa-
tion is compressed and thermal free energy is released.
Due to the relationship between the Gibbs free energy
equation and the Nernst equation, the release of free en-
ergy shifts the equilibrium potential, leading to sparse
but synchronous firing of neurons across the network [23].
The extraction of predictive value reduces entropy, result-
ing in the selection of a single optimal system state which
encodes the state of the surrounding environment.

This report proposes a mathematical model of corti-
cal neuron computation, in which thermal fluctuations
materially contribute to signaling outcomes. Additional
calculations demonstrate that empirically-grounded es-
timates for coulomb scattering profiles and decoherence
timescales in cortical neurons are consistent with a quan-
tum system, with random electrical noise driving signal-
ing outcomes during a non-deterministic computation.

II. METHODS

A. Modeling the cortical neuron as a
two-state quantum system

During up-state, cortical neurons linger at their action
potential threshold, allowing random electrical noise to
prompt a signaling outcome. So, while a neuron is classi-
cally interpreted as a binary logic gate in an ‘on’ or ‘off’
state, coded as 1 or 0, it could also be described as having
some probability of converting to an ‘on’ state or remain-
ing in an ‘off’ state. In this approach, a cortical neuron
integrates upstream signals with random electrical noise,
defining its voltage state as a function of time, as the
system is perturbed. The neuron starts in off-state φ,
not firing an action potential, and over time t, it reaches
another state χ. And so, over some period of time, from
t0 to t, the state of the neuron evolves from φ to χ. The
timepath taken from one state to another is given by the
bra-ket notation:

〈χ|U(t, t0) |φ〉 . (1)

This linear mapping of vectors onto a complex plane
provides the probability of a state change, which can be
represented in some basis:

∑
〈χ|k〉 〈k|U(t, t0) |j〉 〈j|φ〉, (2)

Such that U is completely described by base states k
and j :

〈k|U(t, t0) |j〉 . (3)

The time interval can be understood as being t = t0 +
∆t, so identifying the state of the neuron χ at time t
can be understood as taking a path from one state to
another:

〈χ|ψ(t0 + ∆t)〉 = 〈χ|U(t0 + ∆t, t0) |ψ(t0)〉 . (4)

If ∆t = 0, there can be no state change. In this case:

|ψ(t0 + ∆t)〉 = |ψ(t0)〉 . (5)

In any other case, the state of the neuron at time t
is given by the orthonormal base states k and j, with
probability amplitudes:

Ck(t0 + ∆t) = 〈k|ψ(t0)〉 (6)

And:

Cj(t0 + ∆t) = 〈j|ψ(t0)〉 . (7)

The state vector ψ at time t is a superposition of the
two orthonormal base states k and j, with the sum of the
squared moduli of all probability amplitudes being equal
to 1:

|Ck|2 + |Cj |2 = 1. (8)

The neuronal state |ψ〉 at time t can therefore be de-
scribed as a normed state vector ψ, in a superposition
of two orthonormal base states k and j, with probability
amplitudes Ck and Cj. With a neuron starting the time
evolution in the state |ψ(t0)〉 = j, Eq. 4 can be given as:

〈k|ψ(t0 + ∆t)〉 = 〈k|U(t0 + ∆t, t0) |ψ(t0)〉 . (9)

This equation can also be written as the sum of all
base states:

〈k|ψ(t)〉 =
∑

j
〈k|U(t0 + ∆t, t0) |j〉 〈j|ψ(t0)〉 . (10)

For the state vector ψ(t), the probability of a state
change at time t is described by the U-matrix, Ukj(t):

Ukj(t) = 〈k|U(t0 + ∆t, t0) |j〉 . (11)
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And so, all probability amplitudes are dependent on
the amount of time that has passed, ∆t:

Ck(t0 + ∆t) =
∑

j
Ukj(t)Cj(t0) . (12)

If ∆t = 0, there can be no state change and k = j.
If ∆t > 0, there is some probability of a state change,
where k 6= j. As such, the two-state quantum system is
described by the Kronecker delta δkj :

δkj = 〈k|j〉 =

{
1, if k = j

0, if k 6= j
(13)

Here, the neuronal state |ψn〉 evolves over time, with a
binary signaling outcome at time t being a function of all
local ion states. The state of each ion in the system |ψi〉
also evolves with time, with its location at time t defined
in relation to each local neuron, either inside that neuron
or outside it. Any change in the location of a particular
sodium ion is a function of the electrochemical poten-
tials of all nearby neurons, which affect the activation
state of all local ion channels, and the position, momen-
tum, and energy state of every component electron. If
the fundamentally uncertain state of an electron affects
the state of the entire ion, in the presence of a dynamic
electrical field, the present state of that ion is probabilis-
tic, and the resultant voltage state of each neuron is also
probabilistic. This uncertainty is expected to affect the
membrane potential of cortical neurons in up-state, with
quantum events actually contributing to the probability
of a signaling outcome.

B. Retaining sensitivity to quantum states
at the macroscale

Every electron in the system has some possible energy
orbital ε, and some position in the x,y,z plane, both of
which are fundamentally uncertain at time t. Any energy
above ground state may be dissipated toward the pro-
duction of information: a distribution of complex-valued
probability amplitudes describing the possible states of
each electron. In modeling the electron, the state vector
ψ can refer to its energy orbital, which can be any one of
several orthonormal pure states |ψe〉.

Because the state of each electron is fundamentally un-
certain, the state of each ion is uncertain. The probabilis-
tic state of each electron affects the most likely state of
each ion – and this uncertain state may be sustained in
the presence of a dynamic electrical field exerted by each
neuron in the vicinity, with the electrical resistance of the
neural membrane changing as membrane potentials fluc-
tuate. Because of this sustained uncertainty, each ion can
be considered a two-state quantum system, in relation to
each neuron. A sodium ion, for example, starts the time
evolution outside a given neuron, in state φi, and has

some probability of entering that neuron over time t, as
it evolves into state χi. The location of the sodium ion
at time t, relative to a given neuron, is represented by
the state vector ψi, and exists in a superposition of two
orthonormal base states with probability amplitudes Ck
and Cj .

Because the state of each ion is uncertain, the state
of each neuron is uncertain. Since the neuron’s mem-
brane potential is dependent on the location of each ion
in the system, and the location of each ion is uncertain,
the neuronal membrane potential is also uncertain. A
cortical neuron can therefore be considered a two-state
quantum system, with some probability of undergoing a
state change over time t. The cortical neuron starts the
time evolution below the threshold for firing an action
potential, in state φn, but has some probability of reach-
ing that threshold over time t, as it evolves into state χn.
The state of the neuron at time t, either having reached
the threshold for firing an action potential or not, is rep-
resented by the state vector ψn, and exists in a super-
position of two orthonormal base states with probability
amplitudes Ck and Cj .

In this new approach, either the state of each ion or
the state of each neuron can be modeled with the state
vector ψ. The position of a sodium ion at time t has
either changed or it has not; the firing state of any neu-
ron at time t has either changed or it has not. This
model abandons the classical tradition of considering a
cortical neuron as a binary computing unit, always in
an on-state or an off-state, firing an action potential or
not, at any given moment. Instead, it considers the cor-
tical neuron as a two-state quantum system, described
by the Kronecker delta. Here, the computational unit
calculates the probability of firing an action potential, as
a function of all probabilistic component states. Since a
cortical neuron allows random electrical noise to gate a
signaling outcome, and each electron may contribute to
the voltage state of multiple neurons, the state of each
neuron must be computed simultaneously, as the state of
each component pure state is computed. This inherently
non-deterministic process can be modeled in mechanis-
tic terms. In this mathematically-grounded approach,
the information that is physically generated by a corti-
cal neuron is described as a probability distribution or a
mixed sum of all component pure states.

C. A process of thermodynamic computation
in cortical neurons

A cortical neural network is comprised of N neurons or
computational units, each described by the state vector
ψn. The state of each neuron |ψx〉 at time t is uncertain,
described in terms of two orthonormal base states. ρx
is defined as the outer product of this finite dimensional
vector space:

ρx := |ψx〉 〈ψx| . (14)
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ρ is the sum of all mutually orthogonal pure states ρx,
each occurring with some probability px:

ρ =
∑

pxρx, (15)

The statistical ensemble of these component pure
states is the physical quantity of information held by the
system, given by the von Neumann entropy formula [24].
This thermodynamical and computational quantity is a
high-dimensional volume of probability, represented by
the trace across the density matrix ρ:

S(ρ) = −Tr(ρ ln ρ). (16)

The effect of integrating uncertainty across mixed com-
ponent states is to increase dimensionality and informa-
tion simultaneously. Here it is useful to consider an en-
semble of neurons, each with a state vector ψx. The
mixed sum of all component states is:

ρ =
∑

px |ψx〉 〈ψx|. (17)

The expectation value 〈A〉 of the observable A is given
by:

〈A〉ρ =
∑

x
px 〈ψx|A |ψx〉. (18)

An observation A can then be made by measuring the
system state ρ:

A =
∑

y
|ay〉 ay 〈ay|, (19)

In a mixed state, any one outcome ay occurs with prob-
ability p(ay):

p(ay) = 〈ay| ρ |ay〉 , where
∑

p(ay) = 1 . (20)

The quantity of Shannon entropy H(y) for the en-
semble of measurement outcomes {ay, p(ay)} is always
greater than the quantity of von Neumann entropy S(ρ),
reaching equality only if A and ρ perfectly commute:

H(y) ≥ S(ρ). (21)

This is because the number of possible states for the
system (an algebraic quantity) may be greater than the
dimensionality needed to represent any linearly corre-
lated states (a geometric quantity). Only the non-
correlated states, which do not commute, will yield an
uncompressible density matrix. And so, the random-
ness of information is minimized upon measurement if
the measured observable commutes with the density ma-
trix, leading to a more predictable value being measured.

By contrast, the quantity of entropy is maximized when
the system state is completely random and all non-zero
eigenvalues have equal probability px. In general, the
von Neumann entropy of the system is less than maxi-
mal when some system states are more likely than others
[25, 26]. This will always be the case with a biological
system, which does not have a completely random system
state. Given that ρ has D non-vanishing eigenvalues, the
value of S(ρ) is always less than or equal to the logarithm
of that number:

S(ρ) ≤ log D. (22)

The entropy is also maximized when less is known
about the previous system state. For all non-vanishing
eigenvalues p1, p2, ...pn ≥ 0, which together equal a nor-
malized probability distribution p1+p2+ ...+pn = 1, the
entropy for the system is greater if the previous system
state is not known:

S(p1ρ1 + p2ρ2 + ...+ pnρn)

≥ p1S(ρ1) + p2S(ρ2) + ...+ pnS(ρn).
(23)

As the system is perturbed, by interacting with its en-
vironment, the distinguishability between states may be
lost with the addition of this new information. This ap-
plies to the state of each ion, or the state of each neuron,
as it interacts with its surrounding environment. If non-
orthogonal pure states are mixed, then S(ρ) < H(y).
If all component pure states are completely orthogonal,
then S(ρ) = H(y). Therefore, entropy is additive in
uncorrelated systems, but it is subtractive in correlated
systems, as redundancies or correlations between system
states are reduced. This leads to the subadditivity rule:

S(ρ′A) + S(ρ′B) ≥ S(ρ′AB), (24)

Which applies to any ion, any neuron, or the entire cor-
tical neural network: an open non-equilibrium thermo-
dynamic system (e.g. System A), comprised of N units,
each described by a state vector ψAx, operating within
an environment (e.g. System B), comprised of M units,
each with a state vector ψBx. Each system is described
by a density matrix, or a mixed sum of component pure
states. The system and its surrounding environment are
initially uncorrelated with each other, and the combined
system is created by the tensor product of the two density
matrices:

ρAB = ρA ⊗ ρB . (25)

The combined system evolves over time, as System A
is perturbed by System B:

ρAB → ρ′AB = ρ(t) . (26)
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If the systems are uncorrelated, the states are additive
and the entropy remains unchanged:

S(ρ′A) + S(ρ′B) = S(ρ′AB) . (27)

But if any states are correlated, or non-distinguishable,
entropy will be compressed:

S(ρ′A) + S(ρ′B) > S(ρ′AB) . (28)

As System A is perturbed by System B, the combined
system evolves over time, with the combined density ma-
trix undergoing a unitary change of basis:

ρAB → ρ′AB = ρ(t) = UρABU
† . (29)

The unitary change in basis is provided by the time
shift operator U :

U = e−iĤ(t−t0) , (30)

Where the natural log of U is equal to the imaginary
unit i (which generates a complex axis), multiplied by
the Hamiltonian operator Ĥ (the sum of all potential and
kinetic energies in the system, regardless of whether that
system is an ion, a neuron, or the entire neural network),
and the amount of time that has passed (t− t0), over the
reduced Planck constant ~. U is represented by a square
matrix of finite dimensionality:


u11 u12 u13 · · · u1N
u21 u22 u23 · · · u2N
u31 u32 u33 · · · u3N

· · · · · · · · ·
. . .

...
uN1 uN2 uN3 · · · uNN

 (31)

The product of this U -matrix and its complex conju-
gate U† is an identity whose determinant is always equal
to 1:

det(I) = det(UU†) = det(U)det(U†)

= | det(U) |2 = det(U)det(U)† = 1.
(32)

The columns of U form an orthonormal set of column
matrices, and the rows form an orthonormal set of row
matrices. If System A and System B become correlated
during the unitary change in basis, the rows and columns
of the matrix become linearly dependent vectors. This
internal consistency allows compression of the combined
matrix. The reduction in von Neumann entropy yields
observables, or eigenvalues, on the boundary region of
the probability density, yielding an observable system
state. That is, if time and energy commute, energy is
redistributed to realize an optimal system state from the

distribution of possible system states. But during the
computational process, both the amount of time that
has passed and the system state remain undefined. If
‘System A’ and its surrounding environment ‘System B’
become correlated over the course of this probabilistic
time evolution, then information compression or entropy
reduction will occur as two systems interact:

S(ρA) + S(ρB) = S(ρ′A) + S(ρ′B) ≥ S(ρ′AB). (33)

This equation reaches equality if all component pure
states remain completely uncorrelated. If the two sys-
tems become correlated, then the information (or dis-
tinguishable states) that were initially encoded in the
separate systems are now encoded in the quantum en-
tanglement of the combined system. The entanglement
is given as the tensor product of two Hilbert spaces HA
and HB :

HAB = HA ⊗HB . (34)

Hilbert spaces are inner product spaces with an or-
thonormal basis, populated by probability densities,
which are generated by linear transformations of vec-
tors performed by linear operations. Each orthonormal
pure state generates a Hilbert space, and any pure states
that are identical cannot physically co-exist. Identifying
non-distinguishable states (or linear correlations between
pure states), through a unitary change of basis, will com-
press the von Neumann entropy of the combined system.

D. Schmidt decomposition and
Schumacher compression

The combined system, an M x N density matrix, un-
dergoes eigendecomposition through a unitary change of
basis. The eigenvalues, given by χ, are identified during
a series of linear operations, given by the M x M matrix
U, some measurement or observation d, and the N x N
matrix V †:

χ = UdV † . (35)

A mixed sum of orthogonal pure states, given by den-
sity matrix ρ, has multiple possible realizations, for ex-
ample ρ1:

ρ1 =
∑n

j=1
χj |φj〉 〈φj | ; (36)

And ρ2:

ρ2 =
∑n

k=1
χk |φk〉 〈φk| . (37)
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Here, |φj〉 and |φk〉 are bases within the Hilbert spaces
HA and HB , respectively. χj and χk are eigenvalues
within the set of eigenstates χi. All values for χi are
positive and normalized, such that:

∑n

i=1
χi = 1 . (38)

Here, n is the minimum number of possible states rep-
resented in Hilbert space, and the square root of χi is
the Schmidt coefficient, given by the partial trace across
the two density matrices. Any normalized separable
states form a convex set, with every bipartite pure state
ψAB ∈ HAB within the combined system A ∪ B [27]. Two
different measurements lead to two different state purifi-
cations, yielding two different realizations. Two possible
purifications |ψAB〉 for a bipartite pure state are given
by
∣∣ψ1
AB

〉
and

∣∣ψ2
AB

〉
. These are possible outcomes of

the interaction between System A and System B:

∣∣ψ1
AB

〉
=
∑n

j=1

√
χj |φj〉 |uj〉 ; (39)

∣∣ψ2
AB

〉
=
∑n

k=1

√
χk |φk〉 |vk〉 . (40)

The two purifications only differ by a unitary trans-
formation acting on the combined system, System AB.
Therefore, there must be some unitary matrix d which
converts one state to another:

∣∣ψ1
AB

〉
= (I ⊗ d)

∣∣ψ2
AB

〉
. (41)

Different ensemble realizations of a density matrix can
therefore be identified simply by making different mea-
surements, or observations, given by d :

∣∣ψ1
AB

〉
=
∑n

k=1

√
χk |φk〉 ⊗ d |vk〉 . (42)

This method, called Schmidt decomposition, permits
quantification of the separability between two systems
[28, 29]. Each state |ψAB〉 is separable if and only if
there is one non-zero Schmidt coefficient. If more than
one Schmidt coefficient is non-zero, the state is entan-
gled and represented redundantly by both systems. If all
Schmidt coefficients are non-zero, the systems are maxi-
mally entangled. Schmidt decomposition thereby allows
quantification of the entanglement of a bipartite system
[30, 31]. In this case, an ion, a neuron, or the entire
network is the open non-equilibrium ‘System A’, with
N units, operating in surrounding ‘System B’, with M
units. This method usefully allows quantification of the
entanglement ε for a multipartite system of R compo-
nents, with n possible states [32]:

nR(ρR − ερR) =
∑n

i=1
χi − ε

∑n

i=1
χi . (43)

The compression of information entropy that occurs
over a time evolution in an open thermodynamic system,
as the system state becomes correlated with the state
of its environment, is an entirely natural process of in-
formation compression. A system of N units has some
quantity of information entropy, given by the mixed sum
of all component pure states, after some time evolution
t. These component pure states are described by normed
state vectors in a Hilbert space, and they yield a two-
state quantum system, with each state vector evolving
from state φ to state χ over time t. As System A inter-
acts with its surrounding System B, any linear correla-
tions reduce the number of distinguishable pure states in
the combined system. This reduction of quantum infor-
mation is proportional to the corresponding reduction in
Hilbert space:

lognH = nS(ρ) . (44)

This relation is the Schumacher equation for the com-
pressibility of an ensemble of orthonormal pure states. It
is predicted to apply to any non-equilibrium ‘System A’
within an environmental ‘System B’. If System A acts as
a net energy sink, while retaining a stable overall temper-
ature, System A may use this free energy to drive com-
putational work. Here, the state of each electron, each
ion, or each neuron can be described as the following set
of pure states:

|ψx1〉 , |ψx2〉 , ... |ψxn〉 . (45)

Each pure state occupies a Hilbert space |ψx〉AB ∈
HAB , with an ensemble given by { |ψx〉AB , px} . The
density matrix representing all mutually orthogonal pure
states is therefore defined as an outer product:

(ρx)AB := |ψx〉AB AB 〈ψx| . (46)

A Schumacher compression allows System B to be dis-
carded as correlated states are identified, by taking a
partial trace across the combined density matrix [18, 33].
At the start of the computation, the density matrix for
the combined ensemble of mixed states is given by all
state vectors across the neural network, provided by the
sum of all pure states ρx, each occurring with probability
px:

ρAB =
∑

x
pxρx

=
∑

i

√
χi |φi,A〉 |φi,B〉

∑
i

√
χi 〈φi,A| 〈φi,B | .

(47)
A pure state shared between System A and System B

can then be realized through a purification:

|ψ〉AB =
∑

i

√
χi |φi,A〉 |φi,B〉 . (48)
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Any pure state that is shared between System A and
System B will be realized by taking the partial trace
across the combined density matrix. This process demon-
strates that a single realization of pure states can be rep-
resented independently by the reduced density matrix of
either system:

Tr( |ψx〉AB AB 〈ψx|)

=
∑

i

√
χiχi |φk,A〉 〈φj,A| Tr(|φk,B〉 〈φj,B |)

=
∑

i

√
χiχi |φk,A〉 〈φj,A| δkj

=
∑

i
χi |φk,A〉 〈φk,A| = ρ′A .

(49)
Since |ψi,A〉 ∈ HA and |ψi,B〉 ∈ HB are orthonormal

sets, then χi with (i = 1, 2, ...Ns) are the eigenvalues of
both ρA and ρB . If the two density matrices have the
same spectrum of eigenvalues, these redundancies can be
reduced or compressed. This allows System A to take on
an actualized state by realizing correlations with System
B. Taking the partial trace of ρAB over B yields the mixed
state of subsystem A:

ρA = TrB [ρAB ] =
∑NS

i
χi |φi,A〉 〈φi,A| . (50)

And taking the partial trace of ρAB over A yields the
mixed state of subsystem B:

ρB = TrA[ρAB ] =
∑NS

i
χi |φi,B〉 〈φi,B | . (51)

Block diagonalization of the matrix then realizes the
eigenvalues from this ensemble of mixed states:

S(ρ) = − Tr(ρ lnρ)

= −
∑
x

Tr(pxρx) ln (pxρx)

= −
∑
x

pxln px −
∑
x

pxTr(ρx ln ρx)

= H(px) +
∑
x

pxS(ρx) .

(52)

This value, H(px), is the Holevo bound for the quantity
of information in the ensemble {ρx, px} with trace ρx = 1
for each x [17, 34]. As ρ is realized for an ensemble of
mutually orthogonal mixed states during a computation,
the overall quantity of information held by the system is
compressed:

H(px) = S(ρ)−
∑
x

pxS(ρx) . (53)

Due to the concavity of the log function, the value of
H(px) is always positive [35, 36]. Therefore, by geomet-
ric necessity, the total quantity of von Neumann entropy
generated is always greater than the quantity of compres-
sion, respecting the second law of thermodynamics.

III. RESULTS

A. The extraction of predictive value is equivalent
to a process of quantum information compression

The compression of information is a thermodynamic
process that generates a discrete quantity of free energy
[19-22]. The conversion of these quantities is defined by
the Landauer limit, which calculates the amount of free
energy released by the erasure of a single digital bit:

〈W 〉 ≥ kBT (log 2) . (54)

This concept can be extrapolated to non-digital com-
putational operations with any number of possible sys-
tem states. The recently-derived Still dissipation theo-
rem demonstrates the quantity of non-predictive infor-
mation in a system is proportional to the energy lost
when an external driving signal changes by an incremen-
tal amount within a non-equilibrium system [37]. Here,
the amount of information without predictive value is
equivalent to the amount of work dissipated to entropy
(W diss)as the signal changes over a time course from
xt=0 (the immediately previous system state) to xt (the
present state):

〈Wdiss [ xt=0 → xt] 〉 = kBT [ Imem(t)− Ipred(t)]
= kBT [ Inon−pred(t)] .

(55)
This equation stipulates that any information stored in

memory, subtracted by the total amount of information
with predictive value, is the amount of non-predictive in-
formation remaining after predictive value has been ex-
tracted. This quantity is dissipated as ‘work’ upon the
completion of a computation, and therefore is unavail-
able as free energy to accomplish work within the system
[38]. The memory held by the system I mem(t) is the
amount of entropy gained as System A interacts with
System B, given by S (ρ). The predictive value I pred(t)
is the amount of compression achieved by reducing corre-
lated states during the interaction ρA ⊗ ρB , and the net
quantity of entropy remaining I non-pred(t) is the amount
of work dissipated by the system after completing one
full thermodynamic computation:

kBT [ ∆I] = kBT [ Imem(t)− Ipred(t)]

= kBT [ S(ρ)−
∑
x

pxS(ρx)] . (56)

I mem(t) – I pred(t) ≥ 0, otherwise the system would
create energy through information processing alone, an
event forbidden by the first law of thermodynamics.
Likewise, the quantity of Holevo information H(px) was
shown in Eq. 53 to be a positive quantity by geometric
necessity; this value must be positive to prevent a sim-
ilar violation of the first law of thermodynamics. Yet
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the smaller the value of ∆I = I mem(t) – I pred(t) =
H (px), the more compression has occurred during a com-
putational cycle. This event minimizes net entropy pro-
duction and maximizes free energy availability. During
this thermodynamic computation, predictive value is ex-
tracted, the entropy or number of possible system states
is reduced, and the system becomes more ordered. As
correlations are identified between the two systems, the
most consistent system state is selected from a distribu-
tion of possible system macrostates, and information is
compressed:

∆I = Imem(t)− Ipred(t)
= H(px)

= S(ρ′AB) .

(57)

∆I is always greater than or equal to zero, even though
disorder is reduced during the computation, as the opti-
mal system state is identified. To avoid creating energy
during the computation – a prohibited outcome – the
quantity of ∆I must greater than or equal to zero, with
any non-predictive information, I non-pred(t), being held
in memory until predictive value can be assigned:

Inon−pred(t) = S(ρ)−
∑
x

pxS(ρx) ≥ 0 . (58)

The amount of predictive value extracted, I pred(t), is
positive if linear correlations can be identified in the com-
bined density matrix during the computation:

Ipred(t) =
∑
x

pxS(ρx) ≥ 0 . (59)

But this quantity of predictive value can be no more
than the starting quantity of entropy, I mem(t), from
which predictive value is extracted:

Imem(t) = S(ρAB) ≥
∑
x

pxS(ρx) . (60)

A thermodynamic computation involves an extraction
of predictive value, a compression of information entropy,
and a reduction in possible system states. These thermo-
dynamic and computational processes are equivalent:

kBT [ ∆I ] = kBT [ Inon−pred(t) ]

= kBT [ Imem(t)− Ipred(t) ]

= kBT [ S(ρ)−
∑
x

pxS(ρx) ]

= kBT [ H(px) ] = kBT [ S(ρ′AB) ] .
(61)

That is: the quantity of information with predictive
value is equivalent to the amount of information compres-
sion that occurs during a computational cycle, and that
quantity places a thermodynamic limit on the amount of
increased order achieved by the system. Although en-
tropy is generated by the system, predictive value can
be extracted, leading to a reduction in the distribution
of possible system states. The compression of entropy is
paired with a release of free energy, in accordance with
the Landauer principle [19-22]. And so, during the com-
putational process, random electrical noise is converted
to work, with any reduction of uncertainty materially
contributing to the probability of a signaling outcome.

B. A cortical neural network demonstrably meets
the criteria for a quantum system

If biological neural networks perform quantum compu-
tations, then entire atoms within these thermodynamic
systems must be shown to sustain coherent states, and
these coherent states must contribute to the selection of
an optimal system state from a probability distribution.
Yet doubt has been cast on this hypothesis. Twenty years
ago, Max Tegmark published a notable paper explaining
why "the brain is probably not a quantum computer”
[41]. The report convincingly argued the brain must be
a classical system, because rates of quantum decoherence
do not occur on the timescales relevant to neural activ-
ity, namely the time between action potentials (0.05 -
200 spikes per second) or the time taken to spike (ap-
proximately 1 ms). These timescales rely on estimates
of coulomb scattering of sodium ions at the neural mem-
brane. The original calculations are worth revisiting, par-
ticularly since recent studies have updated the estimates
for coulomb scattering rates at the neuronal membrane.

It is provided in the Tegmark paper (Section 3.2.1) that
Λ, the scattering rate, should be defined as Λ ≡ n σ v ,
"where n is the density of scatterers, σ is the scattering
cross-section, and v is the velocity”.

This definition of the scattering rate Λ is not debated.
It is also provided in the paper: “The spatial superposi-
tion of an ion decays exponentially on a time scale Λ-1

of order its mean free time between collisions. Since the
superposition of the neuron states ‘resting’ and ‘firing’
involves N such superposed ions, it thus gets destroyed
on a timescale τ ≡ (NΛ)-1.”

This definition given for the decoherence timescale τdec
is also not debated. However it must be pointed out that
a neuronal state change is commonly achieved with a
change in position of far fewer ions than was estimated
in the original paper - particularly in cortical up-states,
where neurons remain near the threshold for firing an
action potential [42]. Given this agreement that:

τdec = (Nnσv)−1, (62)
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the values of N , n, σ and v , which together delimit the
timescales of quantum decoherence, can now be formally
reassessed.

The density of Na+ ions is given by 120 mM or n =
7.23 x 1016 m-3. Meanwhile, the velocity of each Na+ ion
at 37◦C (310K) can be estimated as v ≈ sqrt (kBT/m) =
10.6 m/s. Both of these estimates are identical to those
given in the original paper.

Now, it is worth more closely considering the cross-
sectional area σ. The scattering profile of Na+ ions at the
lipid membrane has been studied in greater detail since
these initial estimates of ion decoherence in biological
systems were published [43, 44]. The new scattering es-
timates demonstrate ion-lipid membrane interactions to
reach equilibrium over 100 - 120 ns in a system with 200
mM NaCl extracellular concentration and 20 mM KCl
intracellular concentration. While these studies simulate
ion kinetics at the lipid membrane of a generic cell, the
ion density and lipid membrane properties render this
estimate highly relevant to the neural membrane. This
model gives a scattering cross-sectional area of σ=32.8
nm2 or 3.28 × 10-17 m2 across the lipid membrane, with
a mean residence time of 465 ps for a single Na+ com-
plexing with the lipid membrane [43].

It should be noted that any interactions between Na+
ions in the extracellular milieu do not alter the state of
the neuron. The decoherence, or resolution of the neu-
ronal state, only occurs when these ions interact with
the neuronal membrane. We can estimate that approxi-
mately N = 100 Na+ ions must cross a neuronal mem-
brane to induce a state change, a reasonable assumption
in the case of a cortical up-state, when neurons are al-
ready approaching action potential threshold.

Together, these estimated values provide a decoherence
timescale τdec of 0.4 ms:

τdec = (Nnσv)−1

= [(10)2(7.23× 1016)(3.28× 10−17)(10.6)]−1

= 0.0004 s.
(63)

This value provides the estimated rate at which neu-
rons resolve their voltage state, thereby defining the
temporal parameters for the summation of coincident
charge flux across the neuronal membrane. This deco-
herence rate of 2500 Hz is similar to the exchange rate
of Na+K+ pumps embedded in the neuronal membrane,
which pump sodium ions out of the cell at a variable fre-
quency of 1000 Hz to 100,000 Hz [45, 46]. The rate of
stochastic charge flux is essentially balanced by this rate
of sodium-potassium exchange. And so, any burst in
temporally-coincident events within this timeframe will
affect the probability of a neuron firing. As a result, the
compression of information (paired with free energy re-
lease) is expected to cause fluctuations in the neuronal
membrane potential, shifting the likelihood of the neuron
reaching action potential threshold and opening voltage-
gated ion channels.

The timescales of decoherence are key, particularly in
relation to the estimated timescales of ion dynamics and
ion dissipation. From the Tegmark paper: “If τdyn �
τdec, we are dealing with a true quantum system, since its
superpositions can persist long enough to be dynamically
important. If τdyn � τdiss, it is hardly meaningful to
view it as an independent system at all, since its internal
forces are so weak that they are dwarfed by the effects
of the surroundings. In the intermediate case where τdec
� τdyn < τdiss, we have a familiar classical system.”

A comparison of Na+ ion dynamics, dissociation, and
decoherence at the neuronal membrane shows that τdyn
� τdec and τdyn < τdiss. The timescales of Na+ ioniza-
tion dynamics τdyn are on the order of 0.5 to 5 ps [47],
and the timescales of ion dissociation from the lipid mem-
brane τdiss are on the order of 400 to 600 ps [43]. Na+
ions readily displace each other at the membrane, and so
the collision timescale between Na+ ions and lipid macro-
molecules τ coll is equivalent to the cited mean residence
time of 465 ps. In the Tegmark paper, the dissipation
rate is given by the time between collisions, multiplied
by the sodium ion mass and divided by the mass of the
water molecule:

τdiss = τcoll ×
M

m
= 465ps × 22.9898 g/mol

18.0153 g/mol
= 593 ps.

(64)
These timescales of sodium ion dissipation τdiss and

sodium ionization dynamics τdyn, respectively, are ap-
proximately one million and one hundred million times
shorter than the newly estimated timescales of decoher-
ence between sodium ions and the neural membrane, cal-
culated here to be on the order of 0.4 ms. Together,
these timescales fit the Tegmark criteria for a quantum
system. Yet interestingly, it should be noted that only
neurons maintaining a cortical up-state will be able to
participate in these quantum computations, as the quan-
titative requirements for ion flux are too high at normal
resting potential to sustain a coherent state (N > 106

Na+ ions). As such, peripheral neurons and subcortical
neurons are expected to behave deterministically, rather
than probabilistically. Only neural systems which hover
near the threshold for a state change should sustainably
generate quantum information. Similarly, the calcula-
tion of eigenvectors, by a unitary change of basis, should
contribute to signaling outcomes only in neural systems
which reside near the threshold for a state change.

In summary, cortical neural network computation is
expected to be vindicated as room-temperature quan-
tum computing, achieved by calculating eigenvalues for
the position, momentum, and energy state of each elec-
tron in the system, after some perturbation has occurred.
The above calculations demonstrate that interactions be-
tween Na+ ions and the lipid membrane, based on mass,
velocity, ion density, collision rate, and reasonable esti-
mates of coulomb scattering yield a decoherence rate of
0.4ms, which is much longer than originally estimated.
This timeframe is approximately ten times shorter than
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the minimum time between spikes, which is 5 ms in fast-
spiking cortical neurons. That difference is expected to
correlate with the minimum time needed to overcome hy-
perpolarization and re-establish the electrochemical rest-
ing potential to a cortical up-state. Given these newly
estimated timescales of sodium ion decoherence, dissipa-
tion rates and ionization dynamics, cortical neural net-
works can reasonably be theorized to have the proper-
ties of a quantum system. It is therefore expected that
quantum information processing contributes to thermal
fluctuation-dissipation dynamics, thereby affecting the
electrical resistance of each computational unit.

C. Specific predictions of this model

If cortical neural networks are indeed quantum com-
puting systems rather than classical computing systems,
then evidence of quantum information generation and
compression should be observed in the neocortex. As
such, this theory makes specific predictions, with regard
to the wavelength of thermal free energy release upon
information compression [48], as well as the expected ef-
fects of electromagnetic stimulation and pharmacological
interventions in cortical neural networks [49]. Some addi-
tional predictions of the theoretical framework, prompted
by the present model, include:

1. Predicted coulomb scattering rates of sodium ions
at the neuronal membrane

Coulomb scattering of sodium ions at the cellular mem-
brane should be σ u 32.8nm2 in cortical neurons. Given
the known density of sodium ions in the extracellular
milieu and effects of the dynamical electrochemical po-
tential of the cortical neuron membrane in vivo, the scat-
tering rate of sodium ions should be experimentally ob-
served to be in the range of tens of square nanometers.

2. Predicted decoherence timescales of sodium ions
at the neuronal membrane

Timescales of sodium ion decoherence at the cellular
membrane should be τdec u 0.0004s in cortical neurons.
Given the known density of sodium ions in the extra-
cellular milieu, the high sensitivity of cortical neurons
to stochastic charge flux, the velocity of sodium ions
at normal body temperature, and the dynamical elec-
trochemical potential of the cortical neuron membrane,
timescales of sodium ion decoherence should be longer
than timescales of ionization dynamics and timescales of
thermal dissipation (τdyn < τdiss � τdec).

3. Predicted ionization and dissociation dynamics
of sodium ions at the neuronal membrane

Timescales of Na+ ionization dynamics should be em-
pirically shown to be on the order of 0.5 to 5 ps [47], and
the timescales of ion dissociation from the lipid mem-
brane should be empirically shown to be on the order of
400 to 600 ps [43]. If these timescales of sodium ion dis-
sipation τdiss and sodium ionization dynamics τdyn, re-
spectively, are much shorter than the timescales of deco-
herence between sodium ions and the neural membrane,
then the system meets the criteria of a quantum system.

4. Van der Waals forces preceding the action potential

Van der Waals forces should occur between extracel-
lular sodium ions and lipid molecules within the neu-
ral membrane. This prediction may be tested with an
atomic force microscope, as cortical neurons reach action
potential threshold (or don’t) on the basis of apparently
stochastic membrane potential fluctuations and random
electrical noise. In cortical neurons, spontaneous changes
in atomic proximity should cause measurable van der
Waals forces and increased sodium ion leak across the
cellular membrane ahead of signaling events. In periph-
eral neurons, by contrast, the movement of sodium ions
should be consistently random.

5. Random electrical noise affects signaling outcomes
in individual cortical neurons

Mathematical models of probabilistic neural coding
that incorporate random noise have proven useful in pre-
dicting cortical activity at both the cellular level and
the systems level [51, 52]. And yet, the mechanisms by
which cortical neurons regularly select a statistically un-
likely but advantageous system state, in the context of a
noisy dataset, are not well-understood [5, 6, 52]. The
most optimal system state must somehow be selected
from a probability distribution, in accordance with ther-
modynamical laws. Here, it is predicted that the non-
deterministic signaling outcomes of cortical neurons re-
sult from the compression of entropy, as predictive value
is extracted. If quantum information processing does
contribute to signaling outcomes in cortical neural net-
works, then taking a Fourier transform of electrical noise
should yield an improved prediction of the inter-spike in-
terval, compared with models that only sum upstream
inputs and work effectively for modeling spinal reflex cir-
cuits. If signaling outcomes in cortical neurons are truly
deterministic, then random electrical noise should have
no effect on the timing of action potentials, and classi-
cal mechanisms should fully explain the highly variable
inter-spike intervals that are observed in vivo.
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6. Random electrical noise affects network-level dynamics

Information compression events should cause synchro-
nized neural activity in sparsely-distributed populations
across neocortex. The state of the neuron at the moment
the Hamiltonian operator is resolved, as the density ma-
trices commute, will determine its response. Neurons in
a cortical up-state, allowing inherently stochastic events
to gate a signaling outcome, may be nudged toward (or
away from) action potential threshold by the local re-
distribution of energy, as the Hamiltonian is resolved.
Therefore, a system-wide computational event, resolving
the uncertainty in all component pure states, should re-
solve all membrane potentials and lead to synchronous
neural activity in a subset of computational units across
the network. This synchronous activity should be evident
only in neural circuits that allow random electrical noise
to gate signaling outcomes, and this synchronous activ-
ity should occur periodically, as information is physically
generated and compressed.

IV. DISCUSSION

Modeling a unitary change of basis by an ion, a neu-
ron, or the entire brain, ‘System A’ – in the context of
its surrounding environment, ‘System B’ – results in the
selection of an optimal system state from a large prob-
ability distribution, through an inherently probabilistic
computational process that is described in terms of ma-
trix mechanics. Once information compression occurs,
and the optimal system state for that ion, that neuron,
or that brain is selected within its immediate surround-
ing environment, a new time evolution begins, and a new
distribution of probabilistic macrostates is generated, in
accordance with the von Neumann projection postulate.
This process of information generation and compression
then repeats, yielding iterative computational cycles that
allow a thermodynamic computing system to gradually
improve in predictive capacity.

If the system successfully extracts predictive value, the
quantity of von Neumann entropy decreases, and the sys-
tem can achieve a more ordered state during a compu-
tational cycle. If the system becomes more disordered,
with a net increase in the distribution of possible sys-
tem states, there is scope for extracting predictive value
and undergoing a useful compression event. Interestingly,
both things can happen within a single computational cy-
cle. But the net value ofWdiss = kBT (∆I) = T∆S must
always be greater than or equal to zero. If this quantity
were negative, more predictive value would be extracted
from the information than the total amount of informa-
tion available. The first law of thermodynamics holds,
and energy simply cannot be created during the compu-
tation. A strict accounting also requires that free energy
must be physically released back into the system during
information compression, in accordance with the Lan-
dauer principle. This event is expected to be paired with

a resolution of the system state, with non-deterministic
outcomes being actualized across the neural network -
an event characterized by sparse yet synchronous activ-
ity across the neural network.

It is worth noting the deep connection between infor-
mation processing and thermodynamic efficiency. The
amount of Shannon entropy generated, as an internal
process learns about an external process, is bounded by
the total quantity of thermodynamic entropy [39]. In
other words, the rate at which non-compressible informa-
tion is generated provides a lower bound on temperature-
normalized energy consumption [40]. There is a direct
link here between energy efficiency and compressibility,
which is ultimately dependent on the consistency or pre-
dictive value that can be extracted from a thermody-
namic quantity of information.

It is therefore also worth noting the deep connection
between energy-efficient computation and predictive pro-
cessing. Predictive power is maximized in non-Markovian
multi-layer networks through oscillatory kernels – and in
particularly noisy systems, the system is not memoryless,
but rather capitalizes on signal values from the past that
are relevant in assessing the present and predicting the
future [53]. The system under consideration – a corti-
cal neural network engaging in probabilistic coding – is
not Markovian, with a stationary transition matrix. It
is a continuous stochastic process, with any state change
prompted by an exponential random variable: the U-
matrix. This system has a finite or countable state space,
with dimensions equal to the transition matrix; it has
some initial state j ; and it has some non-negative number
of computational units N, each having some probability
of transitioning from j to k. The posterior probability,
at the completion of a computation, is dependent on the
state of the environment, the amount of time that has
passed, and the history of system states. It is not inde-
pendent of its environment, it is not independent of the
amount of time that has passed; and it is not memoryless,
as in a Markovian process.

To quantify the amount of time that has passed, ∆t,
as work is dissipated toward non-predictive informa-
tion over the course of a single computational cycle, a
semi-Markovian model of the Still dissipation theorem is
specifically employed [40]. Here, ∆t is the timescale over
which “an external driving signal changes by an incremen-
tal amount, thereby doing work on the system” [37]. This
semi-Markovian process transitions the system state from
a prior probability (the ‘past’) to a posterior probability
(the ‘present’) through a time-dependent unitary change
of basis, thereby achieving Bayesian inference. The to-
tal amount of work dissipated to non-predictive infor-
mation over the course of a computation is equivalent to
I mem (the total quantity of information gained during the
computation) minus I pred (the predictive value extracted
from that quantity). This entire process of information
generation and compression occurs over ∆t, and therefore
this net quantity is summed over the entire protocol, in
a non-reversible computational process.
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During this non-reversible computational process, in-
formation is compressed and free energy is released back
into the system. This thermal free energy release, at
synapses whose uncertainty is reduced, is paired with
the realization of a single system macrostate from some
distribution of possible system macrostates. Usefully,
this model of thermodynamic computation directly re-
lates the energy-efficiency of the encoding system to the
extraction of predictive value.

In cortical neural networks, an optimal system state
in the present context must be selected from a large
probability distribution. Neuroscientists have previously
modeled this inherently probabilistic computation with
Bayesian statistics [50], random-connection models [51],
or fanofactor analysis of spike variance over time [54].
This report shows that non-deterministic signaling out-
comes can be achieved through a mechanistic (not a sta-
tistically random) process. Here, cortical neurons phys-
ically generate information through noisy coding, then
compress that information to achieve non-deterministic
signaling outcomes.

In this model, a system-wide computation is achieved
by a cortical neural network through the cyclical gen-
eration and compression of von Neumann entropy. The

macrostate of the system is resolved as every component
pure state is resolved. This process periodically culmi-
nates in a defined system state, with a non-deterministic
outcome for every computational unit, as predictive value
is extracted. Due to the utility of this approach, it may be
reasonable to consider cortical neurons as qubits, which
calculate the probability of reaching a state change,
rather than classical computing units, which exist in a
simple on-or-off state.
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