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Abstract

A central problem in the cognitive sciences is identifying the link between consciousness and neural
computation. The key features of consciousness—including the emergence of representative informa-
tion content and the initiation of volitional action—are correlated with neural activity in the cerebral
cortex, but not computational processes in spinal reflex circuits or classical computing architecture. To
take a new approach toward considering the problem of consciousness, it may be worth re-examining
some outstanding puzzles in neuroscience, focusing on differences between the cerebral cortex and
spinal reflex circuits. First, the mammalian cerebral cortex exhibits exascale computational power, a
feature that is not strictly correlated with the number of binary computational units; second, individual
computational units engage in noisy coding, allowing random electrical events to gate signaling out-
comes; third, this noisy coding results in the synchronous firing of statistically random populations of
cells across the neural network, at a range of nested frequencies; fourth, the system grows into a more
ordered state over time, as it encodes the predictive value gained through observation; and finally, the
cerebral cortex is extraordinarily energy efficient, with very little free energy lost to entropy during the
work of information processing. Here, I argue that each of these five key features suggest the mam-
malian brain engages in probabilistic computation. Indeed, by modeling the physical mechanisms of
probabilistic computation, we may find a better way to explain the unique emergent features arising
from cortical neural networks.
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A central problem in the cognitive sciences is identifying the link between consciousness
and neural computation. The key features of consciousness—including the emergence of rep-
resentative information content and the initiation of volitional action—are correlated with
neural activity in the cerebral cortex, but not computational processes in spinal reflex circuits
or classical computing architecture. To take a new approach toward considering the problem
of consciousness, it may be worth re-examining some outstanding puzzles in neuroscience,
focusing on differences between the cerebral cortex and spinal reflex circuits. First, the mam-
malian cerebral cortex exhibits exascale computational power, a feature that is not strictly
correlated with the number of binary computational units; second, individual computational
units engage in noisy coding, allowing random electrical events to gate signaling outcomes;
third, this noisy coding results in the synchronous firing of statistically random populations of
cells across the neural network, at a range of nested frequencies; fourth, the system grows into
a more ordered state over time, as it encodes the predictive value gained through observation;
and finally, the cerebral cortex is extraordinarily energy efficient, with very little free energy
lost to entropy during the work of information processing. Here, I argue that each of these
five key features suggest the mammalian brain engages in probabilistic computation. Indeed,
by modeling the physical mechanisms of probabilistic computation, we may find a better way
to explain the unique emergent features arising from cortical neural networks.

A central problem in the field of cognitive science is the exact nature of the relationship
between consciousness and neural computation. Current methods have not been able to crack
this problem, so a new approach is needed.

Two major features of consciousness are the existence of qualitative perceptual experience
and the initiation of voluntary behavior. The content of perceptual experience is paired with
the encoding of sensory stimuli in modality-specific regions of the cerebral cortex (Chris-
tensen, Ramsoy, Lund, Madsen, & Rowe, 2006; Kerlin, Shahin, & Miller, 2010; Malnic,
Hirono, Sato, & Buck, 1999), and the initiation of voluntary action is also tied to neural
activity in the cerebral cortex (Amador & Fried, 2004; Churchland et al., 2012; Resulaj,
Kiani, Wolpert, & Shadlen, 2009).

Meanwhile, neither spinal reflex circuits nor classical computing architectures generate
representative information content or spontaneous volitional behavior. There must be some-
thing unique about cortical neuron computation that produces these two key features of con-
sciousness. By examining five core puzzles of modern neuroscience, which highlight the dis-
tinctive characteristics of cortical neural circuits, we may identify a new approach to modeling
consciousness as a computational process.

1. The computational power of the cerebral cortex is not tied to the number of binary
computational units

The annals of neurology demonstrate that large numbers of neurons can be lost without
any obvious deficit in perceptual content or voluntary behavior (Feuillet, Dufour, & Pelletier,
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2007). While commenting on an illustrative case in a prominent science magazine, the cogni-
tive scientist Axel Cleeremans rightly noted that “any theory of consciousness has to be able
to explain why a person like that, who’s missing 90% of his neurons, still exhibits normal
behavior” (Goldhill, 2016). The healthy human cerebral cortex contains 86 billion neurons,
each of which are firing an action potential or not at any given moment. This biological system
has been compared to a microchip with 86 billion transistors, each in an on-state or off-state
at any given moment. Such microchips exist, but they do not generate qualitative perceptual
experience or spontaneous goal-directed behavior. Clearly, the exascale computational power
of the brain cannot be explained by modeling Shannon entropy, or summing the binary states
of all computational units. The computational power of the brain must instead be measured
in such a way that its information, or sum of possible system macrostates, is orders of mag-
nitude higher than the number of binary computational units. A probability distribution of
component microstates, or the von Neumann entropy of the system, may provide a better
measure.

2. Cortical neurons engage in noisy coding, allowing random electrical noise to gate
signaling outcomes

The firing patterns of invertebrate sensory neurons (Bialek & Rieke, 1992) and spinal motor
neurons (Powers & Binder, 1995) are easily predicted by summing upstream inputs. By con-
trast, neurons in the mammalian cerebral cortex allow stochastic ion leak (Dorval & White,
2005) and spontaneous subthreshold fluctuations in membrane potential (Stern, Kincaid, &
Wilson, 1997) to contribute to the likelihood of firing. Cortical neurons even exist in a coordi-
nated “up-state,” right near the action potential threshold, allowing random electrical noise to
gate signaling outcomes (Haider, Duque, Hasenstaub, & McCormick, 2006). The Hodgkin–
Huxley equations provide an excellent approximation for predicting individual cortical neu-
ron firing patterns under steady-state conditions. But the underlying relationship between
membrane voltage, ion conductances, and channel activation—given by these partial differ-
ential equations—must ultimately be described by either modeling all eigenvectors in the
system or by modeling a Hopf bifurcation to find the critical point where the cortical neuron
flips from an off-state to an on-state (Austin, 2008; Rinzel & Miller, 1980; Rowat, 2007).
These are inherently probabilistic processes.

3. Cortical neurons exhibit synchronous firing patterns at a range of nested
frequencies

Synchronous neural activity is observed across the cerebral cortex during wakeful aware-
ness and is correlated with reported perceptual experience (Buzsaki & Draguhn, 2004; Engel
& Singer, 2001). Synchronous firing is also observed across the motor cortex during tasks
(Jackson, Gee, Baker, & Lemon, 2003) and during sleep (Steriade, Timofeev, & Grenier,
2001). Yet, it has been difficult to reproduce these sparsely distributed patterns of synchronous
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neural activity by modeling recruitment with classical mechanisms (Stacey, Krieger, & Litt,
2011). These firing patterns across the cerebral cortex have previously been modeled as a
random statistical ensemble (Beck et al., 2008), as the result of a random-connection model
(Maoz, Tkacik, Esteki, Kiani, & Schneidman, 2020), and using fanofactor analysis of spike
variance over time (Fayaz, Fakharian, & Ghazizadeh, 2022). These population-level firing
patterns also indicate that cortical neuron signaling outcomes are inherently probabilistic,
and must be modeled accordingly.

4. The cerebral cortex grows into a more ordered state over time, locally violating the
second law of thermodynamics

The system remodels itself into a more compatible state with its surrounding environment
over time (Pulvermuller et al., 1996; Turrigiano, Leslie, Desai, Rutherford, & Nelson, 1998;
Zarnadze et al., 2016). This is an unlikely event, unless there is some physical mechanism
by which a nonequilibrium thermodynamic system traps heat to drive computational work,
reducing a broad probability distribution (high entropy) into a more ordered system state (low
entropy). Identifying an optimal system state to effectively encode stimuli in the surround-
ing environment reduces uncertainty for the organism. Yet, while the biological mechanisms
of plasticity are well-established, the physical laws underlying this systematic decrease in
entropy are not.

5. The cerebral cortex is highly energy efficient, with very little net free energy lost to
entropy

The brain is extraordinarily energy-efficient, with caloric intake almost exactly matching
the amount of caloric energy expended on work (Engl & Attwell, 2015; Harris & Attwell,
2012; Howarth, Gleeson, & Attwell, 2012; Zhu et al., 2012; Zhu, Wang, Pan, & Zhu, 2019).
Again, this is an unlikely occurrence, unless there is some mechanism by which a nonequi-
librium thermodynamic system traps heat to drive computational work with minimal inef-
ficiency. The ability to select or favor an optimal system state that encodes the surrounding
environment not only reduces a system-wide probability distribution but also reduces the ther-
modynamic entropy of the system, resulting in more free energy being available to do work.

6. Conclusion

All five of these puzzles point to one rational solution: The brain engages in probabilis-
tic computation. Indeed, this point has been well-appreciated in neuroscience for 30 years.
Yet, for 30 years, neuroscientists have modeled cortical neurons as noisy but classical sys-
tems, instead of inherently probabilistic systems. Meanwhile, a mechanistic explanation for
the unique emergent properties of cortical computation has remained elusive.



E. A. Stoll / Cognitive Science 47 (2023) 5 of 7

The concept that probabilistic coding in cortical neural networks might be intrinsically
connected to the emergent psychological features of cortical neural networks is not well-
established in the field of cognitive sciences. However, recent work by multiple groups has
converged on the importance of this perspective, demonstrating that probabilistic approaches
enhance deep learning (Gutman & Hyvärinen, 2013), lead to the generation of predictive
models (Jara-Ettinger, Schulz, & Tenenbaum, 2020), yield context-dependent psycholog-
ical states (Bruza et al., 2023; Chang, Biehl, Yu, & Kanai, 2020), and contribute to a
sense of agency when navigating uncertain situations (Majchrowicz, Kulakova, DiCosta,
& Haggard, 2020). Of course, the question of whether humans can actually exert agency,
and whether such a capability might be compatible with causal determinism, is still hotly
debated (Dennett 2014; Khalighinejada, Schurger, Desantisa, Zmigrod, & Haggard, 2018;
O’Connor & Franklin, 2020). And some theories of consciousness, including Integrated
Information Theory, do not require probabilistic computation for a system to have conscious
experience—positing instead that any information-encoding system may have some level of
consciousness (Tononi, Boly, Massimini, & Koch, 2016).

Yet, it may be useful to consider the brain as a truly probabilistic computational system,
rather than a classical computational system. Cortical neural networks encode the surround-
ing environment by selecting an optimal system state, in context, from a broad distribution
of possible system states. In comparison with spinal reflex circuits, this computational pro-
cess allows electrical noise to gate signaling outcomes, and results in synchronous yet sta-
tistically random signaling outcomes across the neural network. This neural activity in turn
drives contextually relevant behavior, paired with qualitative experience. The entire system
is surprisingly robust to losing computational units, is almost perfectly energy-efficient, and
physically remodels itself into a more compatible state with its surrounding environment over
time. These are not typical features of a classical system, and may indicate a fundamentally
different kind of computation. Identifying the mechanisms by which cortical neurons engage
in probabilistic computation, with extraordinary thermodynamic efficiency, could provide a
more cohesive theoretical framework for neuroscience. This effort may also benefit other
areas of cognitive science. Indeed, the emergent features of cortical neuron computation—
including perceptual content and nondeterministic behavioral outcomes—may turn out to be
deeply tied to the unique physiological properties of cortical neurons.
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