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Neuronal populations in the cerebral cortex engage in probabilistic coding, effectively encoding
the state of the surrounding environment with high accuracy and extraordinary energy efficiency. A
new approach models the inherently probabilistic nature of cortical neuron signaling outcomes as a
thermodynamic process of non-deterministic computation. A mean field approach is used, with the
trial Hamiltonian maximizing free energy and minimizing the net quantity of temperature-entropy,
compared with a reference Hamiltonian. Thermodynamic quantities are always conserved during
the computation; free energy must be expended to produce information, and free energy is released
during information compression, as correlations are identified between the encoding system and its
surrounding environment. Due to the relationship between the Gibbs free energy equation and the
Nernst equation, any increase in free energy is paired with a local decrease in membrane potential.
As a result, this process of thermodynamic computation adjusts the likelihood of each neuron firing
an action potential. This model shows that non-deterministic signaling outcomes can be achieved
by noisy cortical neurons, through an energy-efficient computational process that involves optimally
redistributing a Hamiltonian over some time evolution. Calculations demonstrate that the energy
efficiency of the human brain is consistent with this model of non-deterministic computation, with
net entropy production far too low to retain the assumptions of a classical system.

I. INTRODUCTION

To compute the most likely state of the surrounding
environment, a cortical neural network must select an
optimal system state in the present context from a large
probability distribution. Researchers have previously
modeled this inherently probabilistic computation with
Bayesian statistics [1], random-connection models [2], or
fanofactor analysis of spike variance over time [3]. For in-
dividual neurons, the Hodgkin-Huxley equations provide
a good approximation of firing patterns under steady-
state conditions [4]. But channel leak and spontaneous
subthreshold fluctuations in membrane potential signifi-
cantly contribute to the likelihood of a given cell reaching
action potential threshold [5-8]. Indeed, the relationship
between membrane voltage, ion conductances, and chan-
nel activation, given by the Hodgkin-Huxley equations, is
a classical limit that emerges from intrinsically stochastic
processes [9-11]. Notably, cortical neurons actively main-
tain a coordinated ’up-state’, allowing electrical noise to
gate signaling outcomes [12]. Yet despite extensive litera-
ture on the statistical randomness of neuronal population
coding and inter-spike variability, the mechanistic basis
for achieving inherently probabilistic signaling outcomes
across a cortical neural network is not well-understood.

Mean field theory has been usefully employed to model
probabilistic coding in cortical neural networks [13, 14].
This methodology allows an exploration of the solution
space, leading to the selection of a system state from a
probability distribution [15]. At the mean field limit, the
network achieves a fixed state, where excitatory and in-
hibitory contributions are balanced, so that fluctuations
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dominate the network level dynamics [16, 17]. As a re-
sult, the application of mean field theory has led to a
better understanding of the contribution of internal mem-
brane fluctuations to signaling outcomes [18] and how
stochastic events shape network-level dynamics [19, 20].

Biological systems gradually achieve a more ordered
configuration over time by identifying a more compatible
state with their environment, simply by reducing predic-
tive errors [21, 22]. This view, known as the free energy
principle, asserts that learning systems strive toward ’the
minimization of surprise’, with new information contin-
ually prompting the revision of erroneous priors [23, 24].
Similarly, the concept of ‘free energy’ has been regularly
employed in the machine learning field to solve optimiza-
tion problems through a process of gradient descent [25,
26]. It should be noted however that ‘free energy’ is a
statistical quantity, not a thermodynamic quantity, in
these contexts. For the past forty years, researchers have
striven to explain computation, in both biological and ar-
tificial neural networks, in terms of ‘selecting an optimal
system state from a large probability distribution’ [27,
28]. Yet a mechanistic connection between noisy coding
and energy efficiency has remained elusive.

This report presents a thermodynamic basis for mean-
field theory, with the Hamiltonian being modeled not
only as a computational quantity but also as an energetic
quantity. Modeling cortical information processing as an
iterative process of minimizing entropy and maximizing
free energy ties together the bio-energetic efficiency of the
system with the computational accuracy of the system.
In this model, noise drives a non-deterministic computa-
tion, with the compression of information entropy paired
with a release of free energy, which directly affects signal-
ing outcomes. The extraordinary energy efficiency of the
human brain is shown to be compatible with this model.
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II. METHODS

A. A thermodynamic mean field model

A mechanistic process of thermodynamic computation
is modeled with a Hamiltonian 〈H〉t, which is the sum of
all potential and kinetic energies in a non-equilibrium sys-
tem. The Hamiltonian operates on a vector space, with
some spectrum of eigenvalues, or possible outcomes, that
can be obtained from a measurement. That measurement
provides an exact solution for the Hamiltonian. This
computational process resolves the amount of free energy
available to the system Ft, which is the total amount of
energy in the system 〈H〉t less the temperature-entropy
generated by the system TSt:

Ft = 〈H〉t − TSt . (1)

If no time has passed, or no interactions take place,
the reference Hamiltonian H0 is the sum of all degrees of
freedom ξi for all probabilistic components of the system:

H0 =

N∑
i=1

hi(ξi) . (2)

If some time has passed, or interactions have taken
place, the Hamiltonian Ht of the system can be modeled
as the mixed sum of all pairwise interactions:

Ht =
∑

(i,j)∈P

Vi,j(ξi, ξj) . (3)

The mean field is then given by:

hMF
i (ξi) =

∑
{j|(i,j)∈P}

V0(ξi, ξj)Z0(ξj) . (4)

Where V0 represents the trace over Vi,j and Z0 repre-
sents the trace over e−Ĥ/kBT . As the encoding System is
perturbed, by interacting with its surrounding environ-
ment, the Hamiltonian evolves over time:

Ht = H0 + ∆H . (5)

The Hamiltonian is dependent on an enormous number
of contributing parameters. For this reason, it is compu-
tationally challenging to identify an exact solution, and
variational methods in statistical physics use approxi-
mations to do so. Of course, different ’measurements’
may yield different solutions, with different spectrums of
eigenvalues. To model this variational outcome, we can
employ a trial Hamiltonian:

H̃t = H0 + 〈∆H〉 . (6)

The original Hamiltonian has the same spectrum of
eigenvalues as the trial Hamiltonian. However, the orig-
inal Hamiltonian differs from the trial Hamiltonian by
some positive value, such that:

〈H̃t〉 = 〈H0 + 〈∆H〉〉 = x〈Ht〉 . (7)

Since:

〈H̃〉t = x〈H0 + ∆H〉 , (8)

the free energy of the trial Hamiltonian must be greater
than or equal to the free energy of the original Hamilto-
nian. This is known as the Bogoliubov inequality:

F̃t = 〈H̃〉t − TSt ≥ Ft = 〈H〉t − TSt . (9)

The computation results in energy being effectively re-
distributed across the system, with some trial Hamil-
tonian maximizing free energy availability. That trial
Hamiltonian will be thermodynamically favored. The full
account must always be balanced - with the total amount
of energy in the system, represented by the Hamiltonian,
being the sum of all free energy and temperature-entropy.

B. The entropy of the system

For a classical thermodynamic system, the macrostate
of the system is a distribution of microstates, given by
the Gibbs entropy formula. Here, kB is the Boltzmann
constant, Ei is the energy of microstate i, pi is the prob-
ability that microstate occurs, and the Gibbs entropy of
the system is given by S :

S = −kB
∑

pi ln pi. (10)

Yet the behavior of cortical neural networks can be
better described as a statistical ensemble of microstates
[1, 2]. And so, in this model, the macrostate of the sys-
tem is formally described as a statistical ensemble of all
component pure microstates, given by the von Neumann
entropy formula:

S(ρ) = −Tr (ρ ln ρ). (11)

Here, entropy is a high-dimensional volume of possible
system states, represented by the trace across a density
matrix ρ. ρ is the sum of all mutually-orthogonal pure
states ρx, each occurring with some probability px:

ρ =
∑

pxρx, (12)
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Each component state is described by a state vector ψx.
For example, the state of each neuron |ψx〉 at time t is un-
certain, described as having some probability of switching
to an on-state (1) and some probability of remaining in
an off-state (0). ρx is defined as the outer product of this
finite dimensional vector space. The mixed sum of all
these component pure states is therefore:

ρ =
∑

px |ψx〉 〈ψx|. (13)

The cortical neural network is an open non-equilibrium
thermodynamic system (System A), comprised of N
units, each described by a state vector ψAx, operating
within a surrounding environment (System B), comprised
of M units, each with a state vector ψBx. Each system
is described by a density matrix, or a mixed sum of or-
thonormal pure states. The system and its surrounding
environment are initially uncorrelated with each other,
and the combined system is created by the tensor prod-
uct of the two density matrices:

ρA ⊗ ρB = ρAB . (14)

Each orthonormal pure state generates a Hilbert space,
and any pure states that are identical cannot physically
co-exist. Identifying non-distinguishable states (or linear
correlations between pure states) will therefore compress
the von Neumann entropy of the combined system. Any
redundancies are eliminated during a linear transforma-
tion. And so, as the encoding Thermodynamic System
‘A’ is perturbed, by interacting with its surrounding envi-
ronment, Thermodynamic System ‘B’, the density matrix
undergoes a time evolution, from ρAB → ρ′AB :

ρAB → ρ′AB = ρ(t) = UρABU
† . (15)

The unitary change in basis is provided by the time
shift operator U :

U = e−iĤt , (16)

During this time evolution, correlations are identified
between the two particle systems [29, 30]. If the systems
are uncorrelated, the states are additive and the total en-
tropy of the combined system remains unchanged. But if
any component pure states between the two systems are
correlated, entropy will be compressed. Here, entropy
is additive in uncorrelated systems, but it is subtractive
in correlated systems, as mutual redundancies in system
states are recognized and reduced. This process of com-
pression leads to the subadditivity rule:

S(ρAB) = S(ρA) + S(ρB)

= S(ρ′A) + S(ρ′B) ≥ S(ρ′AB).
(17)

Thermodynamic System ’A’ essentially solves a com-
putationally complex problem by identifying correlations
with its surrounding environment, Thermodynamic Sys-
tem ’B’. An optimal system state in the present context
is selected from a broad probability distribution, as in-
formation is compressed. The most thermodynamically
favored and ‘optimal’ system state is the one that is both
most correlated with the surrounding environment and
most compatible with existing anatomical and physio-
logical constraints.

C. The free energy of the system

The Helmholtz equation can be used to calculate the
net change in free energy over some period of time t. In
a thermodynamic system that traps heat to accomplish
work, the net change in Helmholtz free energy Ft is equiv-
alent to the enthalpy Et, less the amount of temperature-
entropy TSt generated over that period of time:

Ft = Et − TSt . (18)

The Helmholtz free energy equation applies in contexts
where pressure is not constant, but temperature is, while
the Gibbs free energy equation applies in contexts where
temperature is not constant, but pressure is. If the over-
all temperature and pressure of the system remain con-
stant, the change in Helmholtz free energy Ft is equiva-
lent to the change in Gibbs free energy Gt:

Gt = Et − TSt . (19)

The Gibbs free energy of a given neuron is related to
its membrane potential:

Gt = −nFVt . (20)

D. The neuronal membrane potential

The Nernst equation calculates the temperature-
dependent voltage shift in an electrochemical cell at ther-
modynamic equilibrium, based on the type and quantity
of charge moving across the cellular membrane:

Vt − V0 =
RT

nF
ln (Qr) , (21)

Where:
Vt is the electrochemical potential of the cell after some
time t has passed (in volts),
V0 is the starting potential of the cell (in volts),
R is the universal gas constant (R = 8.314472 J/Kmol),
T is the temperature in degrees Kelvin (T = 310.15 K
under standard conditions),
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F is the Faraday constant (F = 9.64853×104 C/mol),
n is the number of electrons that are transferred during
the reaction, and
Qr is the reaction quotient, which defines the equilibrium
potential of the reaction.

It is important to note the Nernst equation is specifi-
cally used for describing the resting potential of a neuron,
not the action potential itself, which is a non-equilibrium
process. This equation calculates the likelihood of a neu-
ron firing an action potential upon some perturbance
to the resting state (e.g. any event that increases the
membrane potential or prompts inward sodium currents).
Once the system has shifted away from equilibrium, the
action potential goes to completion.

Thermodynamic systems in equilibrium are generally
robust to shifting away from equilibrium, and the Nernst
equation continues to describe the equilibrium state of
the cell as that balance is restored, often returning the
cell to a resting state. The Nernst equation only breaks
down when the cell exits equilibrium – for example, when
the sodium ion concentration inside the neuron increases
and the equilibrium potential suddenly soars. That non-
equilibrium state is the action potential, and it cannot
be described by the Nernst equation.

Once a reaction proceeds, the Nernst equation can-
not describe that non-equilibrium process. However, this
computational process only affects the resting potential,
so these time-dependent perturbations, occurring in the
context of thermodynamic equilibrium, can be described
by the Nernst equation.

III. RESULTS

A. A thermodynamic computation maximizes
free energy and drives signaling outcomes

The total entropy of System A and System B, prior to
compression, is defined as:

Stotal := S0 = S(ρAB) . (22)

The net entropy of System A and System B, after com-
pression, is defined as:

Snet := St = S(ρ′AB) . (23)

The change in entropy during compression is equiv-
alent to the quantity of correlations identified between
System A and System B:

∆S = St − S0 = S(ρ′AB)− S(ρAB) . (24)

The quantity of entropy is maximized when the system
state is completely random and all non-zero eigenvalues

have equal probability px. The randomness of informa-
tion is minimized if a more predictable value is identified.
In general, the von Neumann entropy of the system is less
than maximal when some system states are more likely
than others. S(ρ′AB) and S(ρAB) reach equality only if
no correlations are identified at all. During the time evo-
lution, entropy is reduced, such that:

∆S ≤ 0 . (25)

The energetic account must always be balanced, with
the net amount of energy acquired by the system dis-
tributed toward either free energy or entropy:

∆E = ∆G+ T∆S . (26)

In order to balance the account, any loss of entropy
during compression must be paired with a release of free
energy, with ∆G = Gt −G0:

∆G ≥ 0 . (27)

Since the total energy of the system does not change
over the time evolution, these two values are equivalent:

−T∆S = ∆G . (28)

The compression of information entropy is paired with
free energy release. This conservation law is known as the
Landauer Principle [31-34]. This free energy is available
to do work, allowing the system to attain a more ordered
state. This work involves shifting the resting membrane
potential to optimally encode the state of the surrounding
environment. This increase in Gibbs free energy, upon
information compression, is paired with an decrease in
the neuronal membrane potential:

∆G = −nF∆V . (29)

Information compression locally increases free energy
and locally decreases the membrane potential. Neurons
which have gained certainty during the computation will
therefore gain free energy and move further away from
action potential threshold, restoring their resting poten-
tial. By contrast, neurons which have gained uncertainty
during the computation will lose free energy and move to-
ward action potential threshold, increasing the likelihood
of firing a signal.

If the overall temperature of the system remains the
same, then information compression must both decrease
the distribution of possible system states and physically
encode information in a pattern of neural activity. As a
result, any reduction of uncertainty regarding the state
of the surrounding environment will correspond to sparse
but synchronous firing in neurons across the network.

In summary, the redistribution of energy during a ther-
modynamic computation, as the Hamiltonian is resolved,
allows the heat-trapping system to physically instantiate
the solution to a computational problem.
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B. Estimating net entropy production
in the human brain

If the system gains internal heat over time t, then this
energy can be distributed toward increasing entropy or
increasing the amount of free energy available to do work.
Minimizing the amount of entropy therefore leaves more
free energy available to do work within the system. Since
energy is always conserved, the account must always be
balanced. Any reduction in entropy during the compu-
tation must be balanced by an increase in the amount of
free energy that is available to do work. Conversely, any
net increase in entropy must reduce the amount of free
energy that is available to do work. If the brain does
engage in non-deterministic computation, with a trial
Hamiltonian maximizing free energy availability, then
the brain should exhibit better-than-classical energy effi-
ciency. The inefficiency of the system, or the net entropy
production, can be calculated using empirical measures.
The amount of temperature-entropy T∆S produced over
time t = ∆ is equal to the net change in enthalpy ∆E
less the change in available free energy ∆G:

T∆S = ∆E − ∆G . (30)

The enthalpy E is the total heat content of the sys-
tem. If work is done on a system, ∆E is equal to the
net change in internal energy of the system ∆U plus the
net work done on the system ∆W . If work is done by
the system, ∆E is given by the net change in internal
energy of the system ∆U minus the net work done by
the system ∆W . In the case of reversible changes to
the quantities of either volume V or pressure p (non-
electrical work), ∆W = −V∆p. For a cortical neural
network – a far-from-equilibrium thermodynamical sys-
tem of electrochemical cells, which actively traps energy
to accomplish work – the quantity of ∆E is given by:

∆E = ∆U − ∆W . (31)

The change in the total heat content of the system ∆E
is given by the net energy gained by the system ∆U sub-
tracted by the amount of work completed by the system
∆W over some period of time t. The net energy ∆U is
given by the quantity of thermal energy entering the sys-
tem ∆Uin subtracted by the quantity of thermal energy
exiting the system ∆Uout over time t. Combining Eqs.
30 and 31 yields:

T∆S = ∆Uin − ∆Uout − ∆W − ∆G . (32)

The net inefficiency of the system, given the
temperature-entropy T∆S, is equal to the net change
in internal energy of the system ∆U , less the work done
by the system ∆W , less the change in free energy ∆G.

Now that all energy in the system is accounted for,
we can calculate values for ∆Uin, ∆Uout, ∆W , ∆G, and
T, to estimate the quantity of ∆S generated by the hu-
man brain. The net change in internal energy of the sys-
tem ∆U is equivalent to the caloric value supplied by the
bloodstream to serve the neural network (provided by the
energy input ∆Uin) minus the amount of excess heat pro-
duced during that period of time (provided by the energy
output ∆Uout). To make a calculation based on neuronal
signaling activity only, the change in free energy ∆G can
be estimated as the quantity of energy released during
the action potential, and the amount of work ∆W can
be estimated as the quantity of ATP expended on setting
up the electrochemical resting potential. The quantity of
entropy ∆S produced in the human brain over time t can
then be estimated by accounting for the constant overall
temperature of the system, T :

∆S =
∆Uin − ∆Uout − ∆W − ∆G

T
. (33)

The energy consumed by the human brain over the
course of a day is approximately 20% of oxygen intake
and 20% of calories consumed by the body, a value
that remains relatively constant regardless of variation
in mental tasks or amount of motor activity [35, 36]. In
adult males, this energetic usage is approximately 400
kilocalories or 1673.6 kJ per day. This estimated rate of
∆Uin is equal to 19.37 J/s or 19.37 Watts.

At rest, the human brain has an estimated metabolic
rate of 3.5mL O2/100g/minute, with venous blood flow
removing heat [37]. This rate yields a sustained jugular
venous-to-arterial temperature difference of 0.3C [38, 39].
This value corresponds to an estimated heat production
of approximately 6 J/kg/min [40, 41]. The rate of ∆Uout

is therefore estimated to be 0.14 J/s or 0.14 Watts.
The amount of energy expended on work ∆W can

be estimated by quantifying ATP turnover in the hu-
man brain. The quantity of ATP used on signaling pro-
cesses in rat neocortex has been estimated at 21 µmol
g−1 min−1 [42], with experimental measurements of total
ATP use approximating 30-50 µmol g−1 min−1 [43-46],
although estimates vary in both directions [47, 48]. Lim-
iting the estimate to signaling processes only, the ATP
turnover in neocortical grey matter is 0.35 µmol g−1 s−1.

Assuming the human brain has a similar rate of ATP
turnover to other mammals, the quantity of ATP used on
signaling processes in the human brain can be calculated
by estimating the total amount of neocortical grey mat-
ter. The size of the human brain by volume is rather vari-
able, with a measured range of 1053-1499 cm3 in adult
men and 975-1398 cm3 in adult women [49, 50]. The
quantity of grey matter is 49.4% - 58.5% in adult men
and 52.1% - 59.6% in adult women, both averaging 55%
[51]. Since the average adult male brain is 1.4 kg [52], the
approximate quantity of grey matter is 770 g, and so the
estimated ATP turnover rate in this energetically expen-
sive tissue is 0.27 mmol/s. In living cells, the hydrolysis
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of one ATP molecule releases 57 kJ/mol of energy. Given
these values, the grey matter of the average adult male
brain expends ATP on neuronal signaling processes at a
rate of 15.36 J/s or 15.36 Watts. This is the estimated
value of ∆W .

Here, ∆Uin is the amount of incoming caloric energy
(19.37 J/s), ∆Uout is the heat loss from the system (0.14
J/s), ∆W is the amount of energy used to set up the
electrochemical resting potential (15.36 J/s), and ∆G is
the amount of free energy stored in the neuronal mem-
brane that is released during the action potential (which
we can assume to be negligible). Each parameter is pro-
vided as a rate of energy turnover in Joules per second,
or Watts. Eq. 33 can be used to calculate the quantity
of energy lost to entropy in the human brain every sec-
ond, given by ∆S. Using the values for each parameter
as described above, and a system temperature T equal
to 37C or 310K, the value of ∆S over the course of t=1s
can be calculated by substituting values into Eq. 33:

∆S =
19.37J − 0.14J − 15.36J − 0.00J

310
= 0.012J .

(34)
This exercise suggests the human brain is 99.9%

energy-efficient, an estimate that corresponds well with
other models demonstrating the remarkable energetic ef-
ficiency of cortical neurons within the central nervous
system [42-48]. The high rate of energetic turnover in
these cells should contribute to significant quantities of
entropy and heat production, yet this seems not to be
the case. There is far too much ordered work hap-
pening here. In addition to electrochemical signaling,
neurons undergo anabolic metabolism, gene transcrip-
tion, protein manufacture, post-translational modifica-
tion, protein transport, and membrane remodeling, all
processes which require energetic expenditure. Notably,
these activity-dependent tasks maintain the ordered state
of the neuron and ensure the physical structure retains
an optimal configuration to encode information within
the neural network. These non-signaling tasks are not
included in the budget for ATP turnover given here, and
may further increase the energy expenditure of cortical
neurons. In addition, the 45% of brain weight which is
not cortical grey matter is not included in this estimate,
contributing to 20% of the total ATP turnover of the
brain, or an additional 3.8 J/s. As a result, the total
amount of energy expended on performing work appears
to exactly match total caloric uptake – leading to the as-
tonishing conclusion that the human brain is nearly 100%
energy efficient.

And so, with excellent estimates for caloric intake, heat
output, ATP turnover, and temperature – based on em-
pirical data – the quantity of energy expended to com-
plete work within the mammalian central nervous system
is found to be curiously efficient. As a result of this ex-
traordinary efficiency, the estimated quantity of entropy
produced by the human brain is far too low to retain the
assumptions of a classical system.

It seems highly unlikely that a physical system whose
primary job is to process information creates no physical
information entropy at all. Instead, this model shows
how a heat-trapping system might cyclically generate and
compress information entropy, recovering free energy as
that thermodynamic quantity of information is parsed for
consistency or predictive value.

C. Predictions

The theoretical model presented here results in an
energy-efficient, non-deterministic, system-wide compu-
tation. As correlations are identified, and information en-
tropy is physically compressed, the thermodynamic com-
puting system takes on a more ordered state and becomes
more compatible with its surrounding environment. This
theoretical framework therefore offers a putative mecha-
nistic link between non-deterministic computation and
extraordinary energy efficiency in the mammalian brain.

This new framework for modeling non-deterministic
computation in cortical neural networks makes specific
predictions with regard to the wavelength of thermal free
energy released upon information compression [53], and
the contribution of these localized thermal fluctuations to
network dynamics [54]. This approach also makes specific
predictions about the expected effects of electromagnetic
stimulation and pharmacological interventions on percep-
tual content [55]. Some further predictions of the theory,
prompted by the present model, include:

1. Cortical neurons should exhibit characteristics
of a quantum system

In this new theoretical model, cortical neurons redis-
tribute a Hamiltonian operator to minimize entropy and
maximize free energy, with this computational process
driving signaling outcomes. This is explicitly a model of
quantum computation, with probabilistic coding cycli-
cally generating and compressing quantum information.
Certainly doubt has been cast on the hypothesis that the
brain is a quantum system [56]. If this hypothesis is true,
then empirical measures of coulomb scattering profiles,
decoherence timescales, ionization dynamics and dissipa-
tion rates should meet the established criteria for a quan-
tum system. In addition, there should be a demonstrable
relationship between thermodynamic quantities, evident
in neurophysiological data. The reduction of uncertainty
during information compression (a reduction in the dis-
tribution of component microstates) should be propor-
tional to the quantity of free energy released. That quan-
tity of free energy released upon information compression
should be proportional to the shift in membrane poten-
tial. In short, the contribution of quantum information
processing to signaling outcomes should be measurable.
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2. Cortical neurons should demonstrate
exceptional energy efficiency

In this new theoretical model, a cortical neural net-
work selects an optimal system state in the present con-
text from a large probability distribution, in a process of
non-deterministic computation. This naturally leads to
the compression of information entropy and the release
of free energy. If cortical neurons are indeed able to re-
cover the energy that is normally dissipated irreversibly
toward the production of entropy, their net entropy pro-
duction should be well below classical expectations for
the amount of work being completed. If cortical neu-
rons do undergo a physical process of non-deterministic
computation, then empirical studies should confirm these
cells to be significantly more energy-efficient than neu-
rons in spinal reflex circuits, which have purely deter-
ministic signaling outputs. This prediction can be tested
by comparing ATP turnover in cells of similar size, with
similar firing rates and similar levels of gene expression,
protein turnover, and intracellular transport. If cortical
neurons are classical computational units, obeying the
null hypothesis, then these cells should exhibit purely
classical energy efficiency.

3. Artificial neural networks with the physical properties of
a cortical neural network should achieve spontaneous

unprogrammed exploratory behavior

One challenge for both organisms and robotics is spon-
taneously exploring the local environment in search of
predictive value, without being explicitly programmed to
do so [57]. Recent advances in state-of-the-art robotics
have involved introducing a library of robot action prim-
itives, parameterized by arguments which are gradually
adopted under a reinforcement learning policy [58]. In
classical computing architectures, there simply cannot be
spontaneous acceleration from rest without programmed
priors and policies. By contrast, in this model of quan-
tum computing architecture, energy is periodically redis-
tributed around the system, to achieve directed work -
including synaptic remodeling and driving the action of
the body. For this reason, far-from-equilibrium systems
that trap heat to do work can spontaneously explore their
environment and gain knowledge about it through this
method of non-deterministic computation. This theory
predicts that such unprogrammed exploratory behavior
can never be achieved in classical computing architec-
ture, because the Hamiltonian cannot be redistributed;
however, robotic hardware with similar anatomical and
physiological properties should be able to achieve sponta-
neous learning by engaging with their local environment.

4. Artificial neural networks with the physical properties of
a cortical neural network should require fewer time and

energy resources to solve computationally complex problems

Another challenge for both organisms and robotics is
minimizing the time and energy resources utilized while
solving decision problems. The system must encode the
most likely state of the surrounding environment, using
one or more sensory modalities impinging on a layered
neural network architecture, then make a decision on
the appropriate response in that context. In classical
computing architecture, computationally complex prob-
lems can be solved through brute force methods [59] or
cascading classifiers [60]. Alternatively a large solution
space can be explored, with a minimization of energy ex-
penditure achieved through gradient descent [25, 26]. In
this model of quantum computing architecture, time and
energy are uncertain until these variables are resolved
into a mutually compatible state for all computational
units within the system. For this reason, this theory
predicts that fewer time and energy resources should be
needed to solve computationally complex problems using
this method of thermodynamic computation. However,
engineered hardware with similar anatomical and physio-
logical properties should exhibit biologically-comparable
time and energy efficiency during decision problems, if
the Hamiltonian is effectively redistributed.

IV. DISCUSSION

The extraordinary energetic efficiency of the central
nervous system has been noted, particularly among the-
orists who query whether this competence is intrinsically
linked to the production of information entropy [61, 62]
or the exascale computing capacity of the brain [63, 64].
In this report, energy is indeed being expended on the
production of information – but rather than being an ab-
stract quantity, or a quantity that is irreversibly lost, this
quantity is released back into the system as free energy as
information is physically compressed, in accordance with
the Landauer principle.

This approach models how cortical neural networks
produce entropy in a thermodynamic sense, then eval-
uates whether information processing emerges from such
a lean assumption. Indeed, all thermodynamic systems
must create entropy, with that quantity related to the
pressure, temperature, density, and volume of the system.
If a hot, dense, non-heat-dissipating system appears to
be nearly 100% energy-efficient, the sensible logic is not
that entropy is not being produced at all, but rather that
correlations are being extracted and information is being
compressed, in accordance with physical laws. This re-
port demonstrates that information generation and com-
pression can occur in far-from-equilibrium systems, with
the system naturally encoding the likely state of its sur-
rounding environment, as it takes on a more ordered state
over time.
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This model of neural computation both vindicates and
elaborates Friston’s free energy principle [21-24], provid-
ing a thermodynamic basis for the reduction of ‘surprise’
during predictive processing. While prior efforts used
statistical methods to model the inherently probabilistic
patterns of cortical neural network activity [1-3, 18], the
present model usefully shows how energy-efficient non-
deterministic computation might be achieved by follow-
ing thermodynamic laws.

Here, employing the laws of information thermody-
namics yields a mechanistic connection between proba-
bilistic coding and the free energy principle in cortical

neural networks. Moving forward, exploring the relation-
ship between energetic efficiency and non-deterministic
computation may prove useful to both the field of neuro-
science and the field of computational physics.
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