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Cortical neurons allow random electrical noise to contribute to the likelihood of firing a signal.
Previous approaches have involved statistically modeling signaling outcomes in neuronal popula-
tions, or modeling the dynamical relationship between membrane potential, ion channel activation,
and ion conductance in individual neurons. However, these methods do not mechanistically account
for the role of random electrical noise in gating the action potential. Here, the membrane potential
of a cortical neuron is modeled as the uncertainty in all electron states, or the quantity of von Neu-
mann entropy encoded by that computational unit. With this approach, each neuron computes the
probability of transitioning from an off-state to an on-state, with the macrostate of each computa-
tional unit being a function of all component microstates. Component pure states are integrated into
a physical quantity of information, and the derivative of this high-dimensional probability density
yields eigenvalues, or an internally-consistent observable system state at a defined point in time. In
accordance with the Hellman-Feynman theorem, the resolution of the system state is paired with
a spontaneous shift in charge distribution, and so this defined system state instantly becomes the
past as a new probability density emerges. This model of Hamiltonian mechanics produces testable
predictions regarding the wavelength of free energy released upon information compression. Overall,
this model demonstrates how cortical neurons might achieve non-deterministic signaling outcomes

through a computational process of noisy coincidence detection.

I. INTRODUCTION

Spinal reflex circuits exhibit near-perfect reliability
and efficiency in transmitting information, with signaling
outcomes that are easily predicted by analyzing upstream
inputs [1]. By contrast, cortical neurons have highly un-
predictable signaling outcomes [2|. Unlike spinal neu-
rons, which exhibit highly deterministic firing patterns,
cortical neurons allow random electrical noise to gate sig-
naling outcomes, resulting in probabilistic firing patterns.
Cortical neurons encode information through a process of
noisy coincidence detection; if upstream signals and ran-
dom noise temporally converge, the neuron reaches ac-
tion potential threshold and opens voltage-gated sodium
channels, leading to the large inward sodium ion cur-
rents which characterize the action potential [3]. Spon-
taneous subthreshold fluctuations in membrane potential
significantly contribute to the timing of action potentials
in individual cortical neurons, demonstrating that ran-
dom noise plays a significant role in prompting cortical
neuron signaling outcomes [4, 5]. Since electrical noise
boosts error and reduces energy efficiency within digi-
tal communication channels, any well-optimized binary
computing system should be highly robust to this ran-
dom noise. And yet, cortical neurons actively maintain
an up-state, hovering near action potential threshold and
allowing noise to drive signaling outcomes [6].

The probabilistic firing patterns of cortical neurons
can be modelled using Bayesian statistics [7], by intro-
ducing random connectivity [8], by employing fanofactor
analysis of inter-spike variability [9], or by modifying the
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Hodgkin-Huxley equations to account for electrical noise
[38-40]. Cognitive processes are also known to shape cor-
tical neuron firing patterns, with contextual cues [10],
prior experience [11], and expectations [12] contributing
to signaling outcomes in the cortex. However, none of
these methods provide mechanistic insight into how indi-
vidual cortical neurons gate signaling outcomes by allow-
ing random electrical noise to contribute to the uncertain
state of each neuron. A new approach is needed.

Classically, the neuron is viewed as a binary comput-
ing unit, always in an on-state or an off-state. Here,
the neuron is modeled as a two-state quantum system,
with some probability of switching from an off-state to
an on-state. Each ion is also superpositioned between two
states, outside or inside a given neuron, with its location
determined by the dynamical voltage state of each neural
membrane in the vicinity and the intrinsically uncertain
state of every component electron. With uncertainty be-
ing preserved rather than lost at the macro-scale, corti-
cal neurons may be able to undergo quantum informa-
tion processing. In the present model, a cortical neuron
integrates probabilistic component states over some time
evolution, generating a Hamiltonian operator. Since each
electron in the system can contribute to the voltage state
of multiple nearby neurons, the state of the entire neural
network must be computed as a whole, with the sys-
tem state being defined as all component pure states are
transiently defined. Any redundant pure states cannot
co-exist and are therefore reduced. This computational
process yields eigenvalues for all state vectors and im-
mediately restores uncertainty across the system. This
theoretical model offers a mechanism by which cortical
neurons might achieve non-deterministic signaling out-
comes through quantum information processing.



II. METHODS

A. DModeling the cortical neuron as a
two-state quantum system

During up-state, cortical neurons linger at their action
potential threshold, allowing both upstream signals and
random electrical noise to prompt a signaling outcome.
So, while a neuron is classically interpreted as a binary
logic gate in an ‘on’ or ‘off’ state, coded as 1 or 0, it could
also be described as having some probability of converting
to an ‘on’ state or remaining in an ‘off’ state. In this
approach, a cortical neuron integrates upstream signals
with random electrical noise, defining its voltage state
as a function of time, as the system is perturbed. The
neuron starts in off-state ¢, not firing an action potential,
and over time ¢, it reaches another state xy. And so, over
some period of time, from tg to ¢, the state of the neuron
evolves from ¢ to x. The timepath taken from one state
to another is given by:

XIU(t,to) [9) - (1)

The probability of a state change can be represented
in some basis:

> (k) (R U (8 t0) 1) (519), (2)

Such that U is completely described by base states k
and j:

(k| U(t,to) |7) - 3)

The time interval can be understood as being ¢t = tg +
At, so identifying the state of the neuron x at time ¢
can be understood as taking a path from one state to
another:

(x|¥(to + At)) = (x| Ulto + At, to) |1b(to)) - (4)

If At =0, there can be no state change. In this case:

[(to + At)) = [ib(to)) - (5)

In any other case, the state of the neuron at time ¢
is given by the orthonormal base states k and j, with
probability amplitudes:

Cilto + At) = (klv(to)) (6)
And:

Cj(to + At) = (jlv(to)) - (7)

The state vector ¢ at time ¢ is a superposition of the
two orthonormal base states k£ and j, with the sum of the
squared moduli of all probability amplitudes being equal
to 1:

C? + 1G5 = 1. (®)

The neuronal state [¢) at time ¢ can therefore be de-
scribed as a normed state vector 1, in a superposition
of two orthonormal base states k and j, with probability
amplitudes C} and Cj. Since the neuron starts the time
evolution in state |1(tg)) = j, its probable state at time
t is given by:

(k[¢(to + At)) = (k[U(to + At, to) [¢b(t0)) - (9)

This equation can also be written in expanded form as
the sum of all transition probabilities:

(k[p(t)) = Zj (K[ U(to + At t0) |5) (Gl (t0)) - (10)

For the state vector v(t), the probability of a state
change at time ¢ is described by the U-matrix, Ug;(t):

Uis(t) = (Ut + At t0) 1) . (11)

And so, all probability amplitudes are dependent on
the amount of time that has passed, At:

Ci(to + At) = Zj Uk (t)C;(to) - (12)

If At = 0, there can be no state change and k = j.
If At > 0, there is some probability of a state change,
where k # j. As such, the two-state quantum system is
described by the Kronecker delta dj;:

_ 1, ifk=3j
orj = (klj) = {0 k£

This approach describes a two-state quantum system.
For small At, each of the coeflicients of the U-matrix Uy
differ from dy; by some amount proportional to At, such
that:

(13)

Uk; (t) = 5kj + ijAt . (14)

Where Vi; = —(i/h)ﬁkj(t), with ¢ representing the
imaginary unit v/—1 and the Hamiltonian operator term
Hy,;(t) representing the time derivatives of each of the
coefficients of Uy;:

%ﬁkj(t)m . (15)

Uij(t) = Okj —



The probability amplitude C(t) at time ¢ is therefore
given by:

Crlto + 1) = Y[k — 1 Hig (DA (10) . (16)

J

Since the sum of §5;C; (o)
simplifies to:

= 9(to), the latter equation

Ci(to + At) — Cr(ty) = Z Hy; (1) At (to) . (17)
J

In dividing both sides of the equation by At, it becomes
apparent that any state change is a sum of all possible
perturbations which affect the system under investiga-
tion, from its starting condition at time to. Again, C(t)
is the probability amplitude (i| ¥ (to)) of finding the state
vector ¥ in one of the base states k = j or k # j at time
t. The time derivative of this probability function yields
the path taken:

Cilto + At) —
At

Cr(to)
) = **ZHkJ ¥(to) . (18)

The system under consideration is therefore effectively
described by the time-dependent Schréodinger equation,
with any state change related to a change in energy dis-
tribution:

ad

hy = Hy = By (19)

Where ¢ is the imaginary unit, i = h/2x is the re-
duced Planck constant, d/dt is the amount of time that
has passed since the calculation was last made, H is the
Hamiltonian operator, which provides a vector map of all
energies in the system, and v is the eigenvector describ-
ing the probable state of the quantum system after some
time t has passed. This equation describes the eigenstate
of a system as a function of the amount of time that has
passed ¢ and the amount of energy available for redistri-
bution across the system, given by the Hamiltonian H.
This equation allows a system state to be defined as the
probability amplitude of possible paths taken since the
state was last defined.

In this model, the neuronal state |¢,) evolves over
time, with the signaling outcome at time ¢ a function
of the sum of all local ion states. The state of each ion in
the system |1);) also evolves with time, with a probabilis-
tic location at time ¢ defined in relation to every neuron,
either inside that neuron or outside it. It should be noted
that any change in the location of an ion is a function of
the electrical fields generated by electrochemical poten-
tials of all nearby neurons, as well as the position, mo-
mentum, and energy level of every component electron

held by that ion. If uncertainty in the state of each elec-
tron is sustained for long enough to affect the behavior
of the entire ion, in the presence of a dynamic electri-
cal field, the state of each ion remains uncertain and the
voltage state of each neuron therefore remains uncertain.
This uncertainty is expected to be sustained in cortical
neurons during an up-state, as stochastic charge flux con-
tributes to the probability of a signaling outcome.

B. Selecting the appropriate level of description

Each electron in the system has some possible energy
state or atomic orbital 17 which is uncertain in the present
moment. Any perturbances to the system, occurring over
time ¢, will contribute to possible changes in the position
r and the momentum s of each electron. Any energy
above the electron’s ground state will contribute to the
Hamiltonian and generate a complex-valued probability
density describing the set of possible system states. Here,
the spatial position and atomic orbital of the electron,
after some amount of time has passed, are modeled as
probability amplitudes distributed across five orthogo-
nal axes, with the actual values being multiples of each
Planck unit. In modeling the electron, the state vector
1) can refer to the energy state or atomic orbital, which
can be any one of several orthonormal pure states [t;),
including a ground state and any number of unlikely ex-
cited states. The state vector v can also refer to the
position r of the electron, across the z, y, and z axes,
or the amount of time ¢ that has passed to reach that
new state. For example, the time-dependent Schrédinger
equation for the position of a particle is:

d .
the [, ) = Hp(r,0) . (20)

Here, the complex-valued probability amplitude can

be termed as all possible positions over position space,
where R is the position eigenvector:

Ck(rat) = <7‘|¢(7‘at0)> . (21)

And the time-dependent Schrédinger equation for the
momentum of a particle § is:

d .
i [W(s,t)) = H|¢(s,1)) - (22)

This complex-valued probability amplitude can be
termed as all possible momenta over momentum space,
where S is the momentum eigenvector:

Ck(svt) = <5W}(Svt0)> . (23)



Because the state of each electron is fundamentally un-
certain, the state of each ion is uncertain — particularly
given the presence of a dynamic electrical field exerted
by every neuron in the vicinity, as ion channels open and
close and membrane potentials fluctuate. Because of this
uncertainty in ion location, each ion can be considered
a two-state quantum system, in relation to each neuron.
A sodium ion starts the time evolution outside a given
neuron, in the state 1,,:, and has some probability of
entering the neuron over time ¢. The physical location of
the ion at time ¢t is therefore a state vector v, in a su-
perposition of two orthonormal base states ¥, and o4,
with probability amplitudes C} and C; such that:

Ya(t) = i) = (Cjl¢(to)) + (Ck [¥(to)) - (24)

Because the state of each ion is uncertain, the state of
each neuron is uncertain. Since the neuron’s membrane
potential is dependent on the position of each electron in
the vicinity, the neuronal voltage state is also uncertain
— particularly given the fundamental uncertainty in posi-
tion, momentum, and energy state of every point charge
in the vicinity. Each neuron can thus be considered a
two-state quantum system, with some probability of un-
dergoing a state change over time ¢. Considering the neu-
ron starts the time evolution at some resting potential,
Yos s, but has some probability of reaching the threshold
for firing an action potential over time ¢, the state of any
given neuron at time ¢ is a state vector 1, in a superpo-
sition of two orthonormal base states 1o, and ¥, ¢, with
probability amplitudes C} and C; such that:

Va(t) = Pnlt) = (Cjl(to)) + (Ck [P(t)) - (25)

At each level of description, the quantum state can be
described by the Kronecker delta. The state of the neu-
ron at time t has either changed or it has not, and the
position of the sodium ion at time ¢ has either changed
or it has not, with the possible outcomes for each com-
putational unit in the system given by the orthonormal
base states k and j, given by the Kronecker delta:

1, ifk=j

0, ifk+#j (13)

ok = (klj) = {

In short, the probability of a state change in a neu-
ron, a sodium ion, or any component electron can be
calculated by modeling the state vector ¥,. It is possible
to model the entire thermodynamic system by summing
the orthonormal base states of all component electrons,
all component ions, or all component neurons. Each level
of description can be considered a quantum system, with
uncertainty preserved rather than lost at the macro-scale.
To model the system at either level of description, p, is
defined as the probability of an object transitioning from
one to another pure state:

The density matrix p is comprised of an ensemble of
mutually orthogonal pure states p,, each having some
probability of occurring p,:

p = Zpacpw = pr V) (Yl s (27)

The quantity of possible states for the system is cal-
culated by tracing the volume of probability amplitudes
across a high-dimensional density matrix. This quantity
is the von Neumann entropy of the system:

S(p) = =Tr(pnp). (28)

The system macrostate is described here as the mixed
sum of all component pure microstates, or the mixed sum
of all outer products multiplied by their transition prob-
abilities. A state vector might represent the position,
momentum, or energy state of an electron, which evolves
as a function of time; the state of a given sodium ion
relative to a given neuron at time ¢; or the on-off state
of a given neuron at time ¢. Here, the inner product
(ay|1)) provides the probability that the state vector |¢)
assigns to the eigenvector (a,|. As such, the probability
of measuring a certain eigenvalue a, equals:

play) = (ay|play) . (29)

The object is in some state at time tg, and it has some
probability of being found in another state at time ¢,
after being transiently defined as a density of possible
states. The mechanics of distributing probabilistic states
into Hilbert spaces, or expending free energy to populate
the Hamiltonian, allows a particle or system of particles
to physically process information, then change state in a
probabilistic manner. The probability of finding a sys-
tem in any one eigenstate can be calculated by applying
the Born rule, which equates the inner product of the
state vector and its expectation value to the probabil-
ity of transition to a particular actual state [13]. This
rule states that any measurement of the observable has
a probability p(¢,) of being equal to an exact value a, at
time t for the state vector v:

p(Wa(t)) = alp®)I- (30)

The square of the absolute value of this wavefunc-
tion is a real number, but the wavefunction itself is a
complex-valued probability amplitude, which exists along
an axis orthogonal to all real eigenvalues. Every proba-
bilistic value a defined along this axis is dependent on the
amount of time that has passed, and each of these values
has a probability amplitude influenced by the constraints



of the system. The primary constraint on any given elec-
tron in this system is the electrochemical potential ex-
erted by each neuronal membrane; these membrane po-
tentials are in turn affected by the relative position and
energy state of each electron in the vicinity. To model the
probabilistic behavior of the system, we will focus at the
level of description of electrons, with the time-dependent
state given by the Hamiltonian:

d A
i _ Hy = Ev. (19)
dt
The total energy of the electron, F, is given by the sum

of all kinetic and potential energies:

s2

E=—+4+V 31

V). (31)

The momentum, s, is given by the derivative of the
wavefunction with respect to position:

d
=t df
(0 0 o\ (32)

And so the square of the momentum, s2, is given by
the second derivative with respect to position:

2
dr (33)
Py P P 202
= B+ —+ — —h .
(8:1:2 T oz T ) v
These equations can now be combined; the time-

dependent state of an electron across time, across en-
ergy states, and across three spatial axes is given by a
wavefunction equation that relates any time-dependent
changes in the electron’s position to its momentum and
energy state:

() = A1)

= ;V2+V() Y(r,t) .

(34)

Once again, the electrochemical potential of each neu-
ral membrane is dependent upon the exact position of
all electrons, in relation to the neural membrane surface,
so the voltage can be modeled as the mixed sum of all
component pure states. Meanwhile the exact position of
each electron is dependent on the strength of these local
electrical fields, with each dynamic membrane potential
exerting forces that affect the position and energy state of
each electron in the vicinity. This sustained uncertainty
has utility in processing information, as consistencies or

correlations within a temporally-bound dataset can be
identified at infinitesimal timescales.

During cortical up-states, neurons actively maintain a
resting potential right near the voltage threshold for fir-
ing an action potential, permitting stochastic ion leak
and spontaneous membrane potential fluctuations to
gate a state change in the computational unit. In the
present moment, the neuron either has reached the volt-
age threshold to trigger a state change, or it has not;
there is some probability of either outcome. The neuron
remains suspended in a state of uncertainty - physically
encoding information, or the mixed sum of all compo-
nent pure states. By sustaining uncertainty, a cortical
neuron generates quantum information. These complex-
valued probability amplitudes then interfere with each
other, with any consistencies or correlations reducing the
overall probability distribution, or the entropy of the sys-
tem. This proposed biophysical process should naturally
achieve a non-deterministic computation of the optimal
system state in the present context.

III. RESULTS

A. Generating a probability density
from quantum uncertainty

To understand the mechanics underlying this process,
a calculation of possible system states across the neural
network can be conceptualized by modeling the Poisson
distribution of charge density for each electron in the
system, in relation to each region of neural membrane,
over some time evolution, thereby generating a sum of
possible paths. Because these events do not occur with
equal probability or independently of the previous system
state, it is more appropriate to model the probability
distribution of position and momentum vectors as r(z)
and s(x), respectively, each defined across three spatial
axes, with a weight function w(z) > 0:

(r,s) = /oo r'(x)s(z)w(z)dz . (35)

—00

In this Sturm-Liouville system, the weight function
w(z) mathematically represents a quantum harmonic os-
cillator. w(x) embodies the quantum uncertainty of the
electron state and naturally generates a Hilbert space for
each position and momentum eigenvector. If this opera-
tion is symmetric or Hermitian, such that:

(r,Ls) = /OO L(r'(z))s(z)w(x)dz

= (L?”, 8) )



Then all polynomials will form complete sets in Hilbert
space, with real eigenvalues and orthonormal eigenfunc-
tions, providing solutions to the second-order linear dif-
ferentiation equation given by:

Lu = Mu, (37)

In which X is a constant and L is a Hermitian operator
defined by the real functions of z, «, 38, and ~:

B @) (39)

L = a(z) T

The probability of any one outcome for r(x) and s(z),
thus transiently defining the system state, is given by p,
the mixed sum of mutually orthogonal states p,, each
occurring with some probability p,:

p(T,S) = Z(pr(m)pr(z))(ps(m)ps(ac)) . (39)

The evolution of the system state p over time ¢ is given
by the Liouville-von Neumann equation:

0 = 0 paha) (il + ) (), (40)

With eigenstates provided by the Hamiltonian opera-
tor and its Hermitian conjugate:

d N d :
ihe le) = H o) = ~ihe (a] = (4ol H. (41)

dt <
Substituting the operator and the conjugate into the
Liouville-von Neumann equation yields:

ih%p = ihY (Hpy — paH) = [H,pa]. (42)

Now we can describe how the system state changes
over time. A non-dissipative thermodynamic system in-
tegrates all possible microstates to generate a probability
density, or a distribution of possible system macrostates.
But this system does not stand alone; it interacts with
the environment. All changes to the system are driven
by perturbation of System A (the network of neurons
or computational units) by System B (the surrounding
environment), with the two systems interacting:

pPA® P = PAB - (43)

Here, System A is the cortical neural network: a
non-dissipative and far-from-equilibrium system, which
is perturbed by incoming caloric energy from the blood-
stream and by electrochemical signals arising from the
peripheral nervous system. These energetic inputs are

trapped by the central nervous system, which acts as a
net heat sink. Without significant energy dissipation,
the particle system can use this energetic input to drive
computational work, over time t:

pas = Pap = p(t). (44)

As System A is perturbed by System B, System A traps
heat energy and uses it to evolve into a new state. The
combined system becomes correlated, by interacting over
some period of time from p(tg) to p(t):

p(t) = U(t,to) plto) U(t, to) ™" . (45)

The interaction is provided by the time shift operator
UAB = U(t,to):

Ult,ty) = e Ht=to)/n (46)

Because time and energy are intrinsically uncertain, U
is represented by a density matrix of finite dimensionality
that evolves over time, a time-dependent wavefunction,
or a Hamiltonian operator which permits energy to be
redistributed over time.

B. Reducing the probability density into
a single observable system state

Because the present position of a particle depends on
whether it has interacted with other particles, the inter-
dependency of eigenvectors must be taken into account
here. By calculating the positions of all particles within
a temperature-defined system in relation to each other,
this approach ensures that particles do not turn out to
occupy the same position, spin and energy state, which
would render them identical. This outcome would cause
the universe to lose mass, and is therefore forbidden by
the Pauli exclusion principle [14]. This conservation prin-
ciple can be applied to any thermodynamic system, so
the total amount of energy available to the system is no
more than the amount of energy stored in the system
plus the net amount of energy that has entered the sys-
tem over time ¢t. In the central nervous system, which
traps thermal energy to drive computational work, the
amount of information entropy is related to the amount
of free energy distributed to the Hamiltonian. Therefore,
the time-dependent Schrédinger equation for an entire
system of particles, which are at least partially depen-
dent on each other, is given by the relationship between
the Hamiltonian operator (the sum of all energies in the
system) and the system-wide density matrix (or quantity
of uncertainty) as a function of time:

() = F o) (47)



Since the probable state of each electron depends (in
part) on the state of all other electrons, which are also
probabilistic, the whole system must be considered to-
gether, as a sum of all pure microstates. This combined
wavefunction relates the state vector ¢ of the quantum
system in relation to the passage of time ¢ and the Hamil-
tonian operator H, which again corresponds to the sum
of all potential energies and all kinetic energies for all
particles in the system. The spectrum of the Hamilto-
nian operator is the set of possible outcomes at the point
when the total energy of the system is measured, after
some time t has passed. The Hamiltonian operator H
is related to the Lagrangian function of position 7, its
time derivative 7 and time ¢. It is calculated by taking
the Legendre transform, in order to minimize the action
necessary to effect change:

H rusla

an—

The vector spaces represented by 7 and $ are gener-
ated by the sum of all perturbances and quantum os-
cillations, which are mathematically represented by the
weight function within the Sturm-Liouville equation. As
a result, the derivative of the Hamiltonian operator is
related to any changes in position and momentum and
time, and therefore can be calculated by taking the par-
tial derivatives of these eigenvectors:

7"1,7'"1’71;) . (48)

- OH OH 0H
dH = aimdriﬁ-ai&dsi-f—ﬁdt. (49)
The phase space distribution p(r, s) describes the prob-
ability of a particular system state being selected from
the total phase space volume d"rd™s. To describe this
phase space volume, the Liouville equation yields the evo-
lution of p(r, s) over time ¢:

ap . 8p dp

- + + =8| = — =0. 50
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As aresult of this geometrical constraint, the state vec-

tors (p, pr, ps) are conserved across the system, and the

vector field (7, $) has zero divergence. This permits tem-

perature and energy to be conserved across the system

as well. The continuity equation is given by:

LS ) 0 e

i=1

Because 0p / 0t equals zero, the continuity in the prob-
ability density can be termed as:

pZ(ar’ gi) - 0. (52)

And because the vector spaces 7 and § are defined as:

. OH

Ty = 881 ) (53)
And:

. OH

S; = a’l"i ) (54)

The continuity laws persist while taking the second
derivative of the Hamiltonian operator. This process
identifies the observable boundary of the total volume
of possible system states:

([ 9*H OPH
p; <87"1881 B 881'87“1') =0 (55)

The relationship between the probability density p de-
scribing the overall system state and the Hamiltonian
operator describing the total energy of the system be-
comes apparent in this equation, as does the relationship
between position and momentum vectors and the Hamil-
tonian operator. Once a trace is taken across the density
matrices representing r(x) and s(z), the weight function
w(z) underpinning the probability distribution can be
solved in relation to the other parameters.

During a system-wide computation, eigenvalues are se-
lected and eigenstates ¢r(z) and ¢r(z) are transiently
resolved. It should be noted that, in this formula-
tion of temporally-proceeding events, the operators drive
the computational cycle, rather than the vector states.
That is, the Hamiltonian operator may evolve over time
(permitting changes in position, momentum, and energy
state) while the vector states themselves remain time-
independent. Any events occurring within a time evo-
lution, which affect the likely position or momentum of
any electron, will therefore contribute to the outcome of
a computation. This includes any quantum oscillations
occurring over that time evolution.

By relating any probabilistic changes in the position
and momentum of each electron to the distribution of
energy across the system, the Hamiltonian operator ef-
fectively portrays all observable outcomes. The unitary
change of basis guiding this computational process is de-
fined by the phase factor exp(iHt/h). Therefore, any re-
versal to the direction of time causes positive energies to
become negative — a result which is disallowed by the first
law of thermodynamics, unless the spin is also reversed
with the introduction of an electric dipole moment [15].
An electric dipole moment is a spontaneous shift in the
energy state of an electron in the presence of an exter-
nal electric field; this event is expected to occur here, in
conjunction with an abrupt reduction in probability den-
sity, as eigenvalues are calculated. If the unitary change
of basis yields a zero determinant, then total dimension-
ality will be reduced and compatible eigenvalues will be



assigned to each state vector across the entire particle
system. Equivalently, taking the derivative of the entire
volume of complex-valued probability amplitudes reduces
all eigenstates into non-deterministic outcomes, yielding
a compatible observable state on the boundary region of
that high-dimensional vector space. With either descrip-
tion, the distribution of probabilities is reduced to a sin-
gle outcome, transiently defining the system macrostate.

C. Restoring uncertainty after the system state
is transiently defined

As System A was perturbed over time, we had inte-
grated all probabilistic component states (and the Hamil-
tonian operator) to create a volume of probability. So
now we can take the derivative of that volume of proba-
bility (and the Hamiltonian operator) to define the sur-
face boundary region. Doing so reduces the probability
density into a single actualized state:

dE dH
o (Al N [¥A) (56)

This equation is the Hellman-Feynman theorem, and
it lies at the core of quantum electrodynamics [16, 17].
Here, any change in the energy state of any electron un-
derlying the wavefunction is proportional to the change
in the Hamiltonian, because the Hamiltonian corresponds
to the sum total of all potential and kinetic energies in
the system. It is useful to note, the total amount of en-
ergy in the system is not what is uncertain, but rather
how this energy is distributed. This measure of possible
system states, or energetic configurations, is the total en-
tropy being created by the system. The total energy F
held by the system is related to any parameter A\ which
contributes to the Hamiltonian operator, such as a shift
in position, momentum, orbital number, electrical field
strength, or magnetic moment. The expectation values
of these observables predict how the energy in the sys-
tem is distributed, to achieve an optimal system state
in the present context. The derivative of the value of
E is therefore related to the inner product of the state
vectors ¥ and the derivative of the Hamiltonian H, both
with respect to the parameter .

Taking the derivative of the Hamiltonian means taking
the derivative of all possible energy states with respect
to all perturbations since the last detection event. The
derivative of this eigenfunction identifies the boundary
region of the high-dimensional probability density; this is
equivalent to identifying the zero determinant through a
unitary change of basis. In either the Hamiltonian model
or the wave mechanics model or the matrix mechanics
model, the complex-valued probability density is reduced
and the state of each component electron in the system
is transiently defined.

In developing this mathematical solution to the
Schrédinger equation, Richard Feynman discovered that

any wavefunction resolution has a discrete effect on the
underlying particles. Once two particle systems inter-
act, physical constraints are introduced into the com-
bined system, and a mutually-compatible state must be
found; the position and momentum and energy state of
every particle become transiently defined, and all inter-
actions within the system can therefore be deciphered
using the equations of classical electrostatics, while ac-
counting for the charge distribution across each atom in
the system. But critically, the wavefunction resolution is
accompanied by a discrete shift in the charge distribu-
tion across each atom in the system, in relation to their
newly-defined distance from each other, locally triggering
van der Waals forces [16, 17].

As a result, any perturbation to the system — for ex-
ample, the movement of electrons or a shift in the local
electrical field — changes the energy state of the system,
in a manner related to the original unperturbed states
and the derivative of the Hamiltonian. The assignment
of nuclear locations, relative to other atomic nuclei in
the system, prompts an alteration in the organization of
electrons around the nucleus, with the charge distribu-
tion distorted from central symmetry. For two atoms
interacting at a separation D — a distance which is large
compared to the radii of the atoms — the induced dipole
moment for each atom is 1/D7. The smaller the distance
between atoms, the larger the dipole moment, and the
larger the boost to angular momentum.

In other words, any ‘detection’ or ‘collision’ between
two particle systems will cause a discrete change in com-
ponent atomic states, with the more probabilistic system
taking on a mutually compatible state with the more in-
flexible system surrounding it — allowing a probabilistic
system to encode the state of its surrounding system into
its own physical state. This is equivalent to a redistribu-
tion of the Hamiltonian.

Once component microstates are assigned, atoms exert
effects on each other, prompting van der Waals forces be-
tween neighboring atoms [18, 19]. This is expected to be
the case in the central nervous system (System A) as it
encodes the state of its surrounding environment (System
B). In accordance with the laws of electrodynamics, the
shift in charge distribution upon wavefunction collapse
should prompt van der Waals forces to emerge between
sodium ions and the lipid molecules of the neural mem-
brane. These forces may alter the likelihood of sodium
ions to be transported across a nearby neural membrane.
In neurons that are approaching the threshold for fir-
ing an action potential, these small currents could affect
whether the neuron reaches threshold or not.

The likely position, momentum, and energy state of
each electron in the system depends on the local electro-
chemical potential exerted by each neural membrane; this
electrochemical potential in turn depends on the proba-
ble position, momentum, and energy state of each elec-
tron. The neuronal membrane potential is uncertain in
the present moment, and is modeled here as the mixed
sum of all component pure states.



The uncertain states populate a single density ma-
trix or a single Hamiltonian operator, which describes
all possible states of the system. The likely state of any
one component electron contributes to the resolution of
other component electrons, as one state constrains all
other possible states [14]. Upon interaction with another
particle system over some time evolution, a mutually-
compatible state is identified, and the encoding system
state is resolved into a singular observable outcome. The
collapse of alternative eigenstates occurs as all other pos-
sible states are reduced. At that point, the informa-
tion held by the system is abruptly compressed, as other
possible states are eliminated. But this defined system
state is transient, because it is paired with an immedi-
ate restoration of uncertainty by the alteration of charge
distribution. The dipole moment induced by wavefunc-
tion resolution prompts new atomic interactions. And
for successive measurements with discrete results, which
do not destroy the entanglement of the particle system,
each measurement with value a establishes the basis for
a new state, which then undergoes subsequent time evo-
lution, in accordance with the von Neumann projection
postulate [20]. And so, immediately after a wavefunction
is resolved, the system again begins to evolve over time,
forming a new probabilistic system state.

D. Converting probability densities to
temporally-irreversible signaling outcomes

Since the expectation value of the energy state for a
given particle (a;| p |a;) is proportional to the expectation
value for its spin (¢| k |}, the energy shift due to an elec-
tric dipole moment causes a sign shift in both values, and
time symmetry is broken. Essentially, as ground states
lose degeneracy, the resulting dipole moments will alter
the attraction between sodium ions outside the neuron
and atoms comprising the lipid bilayer of the neural mem-
brane. The resulting van der Waals forces are expected
to cause a permitted violation of time-reversal symmetry,
thereby effecting causation within the system, as infor-
mation is compressed and eigenvalues are observed.

Yet a system will only demonstrate violations of time-
reversal symmetry if quantum uncertainty contributes to
thermal fluctuation-dissipation dynamics. Only if coin-
cident upstream signaling events and random electrical
noise trigger a drop in membrane resistance, within the
temporal parameters of ion dissipation and ion pump
rectification kinetics, will inherently probabilistic events
contribute to gating a neuronal state change.

This theoretical model proposes a mechanistic process
by which probabilistic microstates contribute to non-
deterministic signaling outcomes. Here, it is proposed
that quantum uncertainty is sustained in the presence
of a constantly changing electrical field, for long enough
timescales to contribute to thermal fluctuations in neural
membrane resistance. However, this is only expected to
be the case in cortical neurons, which have been observed

to gate a state change on the basis of both temporally-
coincident upstream signals and random electrical noise.

E. Conditions under which quantum fluctuations
contribute to dissipation dynamics

A physical structure that actively generates an elec-
trochemical resting potential will generate entropy and
heat. The neural membrane provides resistance, and
therefore some quantity of free energy will be dissipated
into entropy as electrical interactions occur. However, in
a heat-trapping system, this energy is not necessarily ir-
reversibly lost; it can be used to do work [21]. The Callen-
Welton fluctuation-dissipation theorem asserts that ther-
mal fluctuations drive a response function affecting the
impedance of the structure, given by x(¢):

A()O(t)

x(t) = —pHO00 (57)
Where 8 = kgT, 6(t) is the Heaviside step function,
and A(t) is the expectation value of O (t), an observable
that is subject to thermal fluctuations in a dynamical
system. If decoherence timescales within the system are
longer than the timescales of ion dissipation and ioniza-
tion dynamics, quantum uncertainty can materially con-
tribute to ion behavior at the neuronal membrane [22].
That is, if the time-dependent perturbation in the be-
havior of ions relies on any quantum fluctuations in the
position, momentum, or energy state of component elec-
trons, then the ensemble average of each observable (a
measure of fluctuation, given by the Hermitian operator
[Ok(t), O;(to)]) will be related to the response function (a
measure of dissipation, given by x(t—tg), as a function of
time. This relationship is given by the Kubo fluctuation-

dissipation formula [23, 24]:

x(t —to) = i0(t —to) ([ Ok(t),0;(t0) ] ) . (58)

This response function, x(t), can be written as a func-
tion of oscillatory events:

= [ e, (59)

— 00

If t < 0, then 4wt will be negative and e™* will be
zero, so the entire response function x(t) will be zero.
As such, the quantum states underpinning this spectral
function can only causally contribute to dissipation dy-
namics as time moves in a forward direction. The Fourier
transform of the response function provides for dissipa-
tion and fluctuation dynamics in the frequency domain,

given by x(w):

x(w) = —i /000 Tr ( eﬁH[ Ok (), 0,(t0)] ) e™tdt . (60)



This time-dependent function provides the density of
possible states for a particle system, which emerge in the
presence of a perturbation or changing electrical field.
And so [O(t), O;(to)] is simply a description of how the
density matrix, the wavefunction, or the Hamiltonian op-
erator changes over some time evolution, compared with
the probability that all energy states would rearrange in
that same way under time reversal. As such, the response
function x(w) can be written in expanded form:

o0
x(w) = —i/ etdty e s
0

mn ‘ 61
[ (m| Oy [n) (n] O; |m) ¢! (Bm=En)t (61)

_ <m| Oj |TL> <n| O |m> ei(En*Em)t] '

If the uncertainty in electron position, momentum, and
energy state is sustained in the presence of a constantly
changing electrical field, then quantum fluctuations may
contribute to ion behavior, affecting the dynamics of ions
interacting with the electrochemical potential of the neu-
ral membrane. In this case, quantum fluctuations may
contribute to the probability of a state change in the com-
putational unit, from an off-state to an on-state. How-
ever, the state of each neuron at the moment the Hamil-
tonian operator is resolved will govern its response. Neu-
rons in a cortical up-state, which allow stochastic events
to gate a signaling outcome, may be nudged toward ac-
tion potential threshold or away from it as uncertainty
is abruptly reduced. Indeed, only neurons in cortical up-
state, allowing random noise to gate a signaling outcome,
will be nudged to fire a signal. Meanwhile, neurons re-
ceiving suprathreshold stimulation will exhibit determin-
istic firing patterns, and neurons receiving insufficient up-
stream inputs will not be triggered to fire at all.

F. The expected wavelength of spontaneous
free energy release

If cortical neural networks engage in ambient-
temperature quantum computation, then these far-from-
equilibrium thermodynamic systems must bidirectionally
exchange free energy for information, with any free en-
ergy expended on information generation during the ini-
tial stage of the thermodynamic computing cycle being
partially recovered during the information compression
stage. As such, discrete quantities of free energy should
be released, local to any reduction of uncertainty, as an
optimal system state is selected from some probability
distribution. Any thermal fluctuation should correspond
to a shift in electron energy states, boosting the angu-
lar momentum of individual ions. These events should
therefore be observable. To evaluate this hypothesis, we
can calculate the expected effects of quantum fluctuation-
dissipation dynamics in the mammalian central nervous
system.
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If the perturbation to the state of an ion during some
time evolution relies on any random changes to the spin
or energy state of a component electron, then the ensem-
ble average of each observable (a measure of fluctuation,
given by (Z(t), £(0))) will be related to the response func-
tion (a measure of dissipation, given by x(¢)) in the fre-
quency domain [23]. This relationship essentially models
how the oscillatory behavior of a quantum system, along
an imaginary axis, affects the thermal dynamics of the
observable system:

x(t) = i0(t —to) (£(t), (0)), (62)

Where 0(t) is the Heaviside step function and the re-
sponse x(t) provides an expectation value for z(¢), which
is a time-dependent 'observable’ subject to thermal fluc-
tuation in a dynamical system. The time-dependent
equation is given by:

16 = [ 55 ¢ ), (63)

And its Fourier transform is given by:

mwz/ﬂwaﬁ. (64)

If the eigenvalues are to be real, the sum of the real
part and the imaginary part of the response function over
some time evolution x (¢ — tp) must also be real. The full
response function is given by:

X(w) = Rex(w) + Imy(w). (65)
The real part of the response function is given by:

1

3 [d@) = X @)
1

o (66)
=3 /4)0 dt e [(x(t) — x(—t))],

Rex(w)

And the imaginary part of the response function is
given by:

Tmx (@) = — & [(x(w) — x (@)

2
- | (67)
_izwﬁémKMﬂ—XFﬂW

The energy of quantum fluctuations F(w) is related to
the frequency w:

1 1
E(w) = 3 hw coth 3 Bhw, (68)



Where 8 = 1/kpT. The classical power spectrum is
related to the complex-valued quantum spectral density
in such a way that quantum noise can contribute to the
local thermal density under certain conditions:

| 60—ty e a
o o0 (69)
1 - - iwt

If E > kT, with a high temperature, a broad distribu-
tion of electrons across energy states, and low occupancy
of energy states, then the quantum contribution to ion
behavior is negligible, and the behavior of ions will re-
duce to Boltzmann-Maxwell statistics. If £ < kg7, with
electrons at low frequencies obeying the Rayleigh-Jeans
law, then the quantum contribution to ion behavior is
also negligible, and again the behavior of ions will reduce
to classical Boltzmann-Maxwell statistics. Only in cases
of high particle density, when the energy held by an ion
is greater than its chemical potential, and £ > kT, will
quantum fluctuations contribute to ion behavior. This is
predicted to be the case in the mammalian brain.

If quantum fluctuations do indeed contribute to ion
behavior in biological systems, then F must be greater
than kgT. Since:

kpT = (1.38 x 1072 J/K)(310K)

70
= 4.28 x 107%J, (70)

And:

E  428x 10=2 kg m? /52
h 6.63 x 10~3%kg m?2/s (71)
= 6.46 x 102Hz,

it is expected that high-energy particles of £ > kT
will be observed in the central nervous system at 370 C
(310K). Specifically, these high-energy particles should
have a frequency of f > 6.46 x 10'2 Hz, a wavelength of
A < 46 microns, or an energy of E > 0.0267 eV, within
the infrared light spectrum. Spontaneous emissions of
photons in this range have indeed been observed in mam-
malian brain tissue [25-28] and infrared stimulation of the
brain has been shown to have a functional effect on neu-
ral activity [29-31]. Further studies are needed to mea-
sure the exact wavelengths of these photon emissions and
temporally correlate these events with neuronal signaling
outcomes.

In summary, it is predicted that photons, specifically
in the infrared range of the electromagnetic spectrum,
should be released upon information compression in the
mammalian brain. Since the first law of thermodynam-
ics states that energy cannot be created nor destroyed,
any system capable of reducing entropy to achieve a non-
deterministic computation must release free energy upon
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information compression. If quantum computing does oc-
cur in cortical neural networks, then spontaneous thermal
fluctuations should be observed, locally to any reduction
of uncertainty. These thermal fluctuations are expected
to drive synchronous firing across the neural network.

Therefore, in this approach, the reduction of thermo-
dynamic entropy is paired with both the selection of an
optimal system state from a large probability distribution
(one that is thermodynamically favored to correlate with
the surrounding environment) and the release of thermal
free energy (which is used to physically instantiate the
solution to that computational problem).

G. Specific predictions of this model

If cortical neural networks are indeed quantum com-
puting systems rather than classical computing systems,
then evidence of quantum information generation and
compression should be observed in the neocortex. As
such, this theory makes specific predictions for cortical
neurons, with regard to coulomb scattering and deco-
herence timescales [32]. This theory also makes specific
predictions about the expected effects of electromagnetic
stimulation and various pharmacological interventions in
cortical neural networks [33]. Some additional specific
predictions of the theoretical framework, prompted by
the present model, include:

1. Thermal free energy is spontaneously released during the
computation, as information is compressed

Infrared particles with wavelengths of A < 46 microns
or f > 6.46 x 10'? Hz should spontaneously appear at the
neural membrane during cortical information processing.
This prediction can be tested with sensitive infrared de-
tection devices rather than classical electrodes or imaging
systems; the spontaneous release of infrared-wavelength
particles should be observed in the brain as uncertainty is
resolved into signaling outcomes. A quantitative increase
in these particles should be observed, for example, upon
perceptual recognition of a highly uncertain visual or au-
ditory stimulus, with a strong temporal correspondence
to P300 event-related potentials in the cerebral cortex.
By contrast, this spontaneous thermal free energy release
should not occur in the case of an epileptic seizure - when
constitutive ion channel activation, rather than informa-
tion processing, leads to highly synchronized neural ac-
tivity across the cerebral cortex. Of course, spontaneous
emissions of photons in this range have been observed in
mammalian brain tissue [25-28|, and infrared stimulation
of the brain has been shown to have a functional effect
on neural activity [29-31], but further studies are needed
to measure the exact wavelengths of these photon emis-
sions and temporally correlate these events with neuronal
signaling outcomes.



2. The spontaneous release of thermal free energy during
information compression prompts synchronized firing across
the neural network

This theoretical framework describes both a computa-
tional process and a thermodynamic process, since infor-
mation compression is both the selection of an optimal
system state from a large probability distribution and
the reduction of thermodynamic entropy. This system-
wide computational event, resolving the uncertainty in
component pure states, should lead to a spontaneous re-
lease of free energy, driving synchronous firing of neurons
across the network. Synchronous neural activity is in-
deed observed at a range of frequencies in cortical neural
networks, and is considered a correlate of higher-order
cognitive processes [34, 35]. However, the high frequency
oscillations observed during perceptual tasks cannot be
modeled by coupling and recruitment under classical as-
sumptions and timescales [36, 37]. Here, information
compression events are predicted to prompt spontaneous
synchronized activity across sparsely-distributed neuron
populations. This coordinated activity is predicted to oc-
cur in cells that allow random noise to gate signaling out-
comes (e.g. cortical neural circuits) but not in cells that
act entirely deterministically (e.g. spinal reflex circuits).
While this oscillatory activity, occurring at a range of
nested frequencies, has been observed in the mammalian
brain, additional studies could explore the potential cor-
relation between probabilistic coding and network-level
activity in avian and cephalopod species. If synchronous
activity is caused by classical methods of signal propaga-
tion, rather than being the result of a system-wide non-
deterministic computation, then both classical simula-
tions of cortical neural networks and spinal reflex circuits
should readily demonstrate fast and slow oscillations. If
instead synchronous activity across the network is caused
by information compression, paired with free energy re-
lease, then synchronous firing should be eliminated by
absorption of the predicted wavelengths and should be
prompted by introduction of these wavelengths.

3. Higher brain temperatures should lead to
higher-amplitude EEG signals, as well as a qualitatively
richer perceptual experience

Thermoregulatory control is a key requirement for
thermodynamic computation, with higher temperatures
providing more energy for the Hamiltonian operator. For
this reason, higher temperatures — such as those gener-
ated by fever — should lead to an increase in the distribu-
tion of possible macrostates for the neural network, cor-
related with an increase in the richness and diversity of
information content. This uncertainty should also lead to
greater difficulty in effectively compressing the informa-
tion and higher amplitude EEG activity as information
is compressed. Given an uncertain stimulus, it should
be more difficult to reduce the system-wide probability
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distribution into a single outcome, causing perceptual er-
rors. Therefore, this model predicts that a raised tem-
perature within the central nervous system should lead
to increased vividness in perception and decreased ac-
curacy during time-constrained information processing.
Under classical assumptions, high temperatures may lead
to bodily dehydration or protein degradation, leading to
errors in perception due to the unavailability of biochem-
ical resources. In this model, thermal free energy avail-
ability directly contributes to information generation, so
increasing this thermodynamic quantity should immedi-
ately increase the amount of information available to the
system to be perceived. If there are time constraints for
making a decision, in the context of a highly uncertain
stimulus, there should be more frequent errors at higher
temperatures, since more information must be parsed.

4. Lower brain temperatures should lead to lower-amplitude
EEG signals, as well as a diminished perceptual experience
and impaired cognitive function

A difficulty maintaining sufficient temperature across
the central nervous system leads to a decrease in effec-
tive information processing within the neural network.
Under classical assumptions, low temperatures lead to a
decrease in blood flow and oxygen availability, leading to
a loss of consciousness due to this biological shortfall. In
this model, reduced thermal free energy is predicted to
directly reduce the amount of information content gener-
ated, causing percepts to become dim or degraded. The
reduced information content should be correlated with
decreased amplitude in event-related potentials associ-
ated with percept recognition. This model also predicts
that if the thermal free energy released during informa-
tion compression is dissipated too quickly, due to im-
paired thermoregulatory control or metabolic inefficiency,
this quantity will be lost before it can be productively
directed toward work. Thus, thermodynamic inefficiency
should lead both to impairments in synaptic remodeling
during learning and to impairments in directing appropri-
ate motor output in response to sensory input. As such,
people with reduced metabolic efficiency and an inability
to maintain temperature, such as aged individuals, are
predicted to experience diminished perception, decreases
in memory consolidation, and a reduced ability to initiate
voluntary behavior. Maintaining a stable brain tempera-
ture is therefore predicted to promote neurological health
and stave off dementia.

IV. DISCUSSION

The neuron is classically viewed as a transistor, always
in either an on-state or an off-state. Here, the cortical
neuron is modeled as a qubit, with some probability of
transitioning from an off-state to an on-state over some
time evolution. In this new approach, a state change in



the computational unit relies on inherently probabilis-
tic events; this model specifically takes into account the
contribution of random electrical noise in gating cortical
neuron signaling outcomes.

With this new approach, each electron has a range of
possible spatial locations and energy states, in relation
to each neural membrane, after some amount of time
has passed. These complex-valued probability ampli-
tudes, or component pure states, sum together to cre-
ate a complex-valued probability density. This mixed
sum of component microstates is the physical definition
of quantum information, or von Neumann entropy. Some
neurons may receive sufficient upstream signals to push
them over action potential threshold; others will be more
uncertain, and sensitive to the contribution of random
noise. Using the well-established toolkits and mathe-
matical formalism of Hamiltonian mechanics, this study
demonstrates how cortical neurons retaining a state of
uncertainty could physically generate and compress infor-
mation to achieve non-deterministic signaling outcomes.

In accordance with the laws of mechanics, inherently
probabilistic component states are integrated to popu-
late a Hamiltonian operator. The Hamiltonian operator
is then differentiated with respect to all perturbations
to the system. The redistribution of energy that results
from this computational process assigns eigenvalues for
the spatial location and atomic orbital of each electron
in the system at a single point in time. This newly-
actualized system state immediately becomes the past, as
new probability amplitudes emerge to describe the likely
position, momentum, and energy state of each electron
in the present moment, in relation to the electrochem-
ical potential exerted by each nearby neural membrane
surface. There are two additional ways to describe this
computational process, provided in sister reports:

In accordance with the laws of thermodynamics, free
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energy must be expended to create information and this
free energy is partially recovered upon information com-
pression. In this model, probabilistic component pure
states can be represented algebraically by a density ma-
trix [32]. The density matrix undergoes a unitary change
of basis, as the system state is perturbed by its surround-
ing environment over some time evolution. The diagonal-
ization of the density matrix yields a zero determinant,
leading to observables on the boundary region of that
high-dimensional probability density.

In accordance with the laws of holography, these prob-
abilistic component pure states can also be represented
geometrically as complex-valued waves or wavefunctions
[33]. These complex-valued wavefunctions or probabil-
ity amplitudes constructively and destructively interfere
on the charge-detecting polymer surface of the neural
membrane. As a result of this physical interference be-
tween probability amplitudes, dominant probabilities are
favored, becoming actualized on the boundary region of
the high-dimensional probability density.

This model of Hamiltonian mechanics is complemented
by these models of matrix mechanics and wave mechan-
ics, which also demonstrate a computational process of
information generation and compression. In short, cor-
tical neurons may be better described as qubits, encod-
ing von Neumann entropy, rather than classical bits, en-
coding Shannon entropy. This theoretical framework for
non-deterministic computation at ambient temperatures
may not only provide useful insight into the operation
of biological systems, but also drive advances in machine
learning and decision-making.
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